نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی بیوسیستم، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

2 استادیار گروه مهندسی بیوسیستم، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

10.22092/amsr.2023.362142.1449

چکیده

هدف این تحقیق بررسی اثر دما (در سه سطح 55، 65 و 75 درجة سلسیوس) و مواد تغییر فاز دهنده (PCM) بر چهار شاخص کمی شامل؛ میزان انرژی مصرفی کل، مقدار انرژی ویژه، مدت ‌زمان خشک شدن و یکنواختی خشک شدن است. با ترکیب متغیرهای مستقل، مجموعاً شش تیمار به دست آمد. فرآیند خشک‌ کردن تحت پیش تیمار توان فروسرخ 250 وات، زمان فروسرخ 10 دقیقه، توان ریزموج 400 وات، زمان ریزموج 4 دقیقه و آنزیم­بری در خشک‌کن بستر ثابت طبقاتی دنبال شد. این مطالعه به‌ صورت آزمایش فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار برای متغیرهای انرژی مصرفی کل، انرژی ویژه و زمان خشک شدن؛ و با شش تکرار برای متغیر یکنواختی اجرا شد. داده‌ها در نرم‌افزارIBM SPSS Statistics26  تجزیه‌ و تحلیل شدند. در پایان، به­ منظور یافتن بهترین تیمار از روش ادغامی کپ لند استفاده شد. نتایج بررسی­ها نشان داد که اثر تیمارها بر میزان انرژی مصرفی کل معنی‌دار نیست. بهترین تیمار از نظر انرژی ویژه مصرفی تیمار دمای 75 درجة سلسیوس -نبود مواد PCM با مقدار 02/1 کیلووات ساعت بر کیلوگرم است. بهترین تیمار از نظر میزان انرژی مصرفی کل، انرژی ویژه مصرفی و زمان خشک شدن را دمای 75 درجة سلسیوس - نبود
مواد PCM نشان داد.

کلیدواژه‌ها

Aidani, E., Haddad Khodaparast, M. H., & Kashaninejad, M. (2017). Characterization of dried kiwi by infrared systems and process modeling. Journal of Food Technology and Nutrition, 14(56), 53-66. (in Persian)
 
Amanlou, Y., & Zomorodian, A. (2010). Applying CFD for designing a new fruit cabinet dryer. Journal of Food Engineering, 101(1), 8-15.  DOI:10.1016/j.jfoodeng.2010.06.001.
 
Amiri Pour, M., Habibi Najafi, M. B., Mohebi, M., & Emadi, B. (2017). Optimization of osmosis-hot air drying of pear using Response Surface Methodology. Journal of Food Science and Technology (Iran), 14(62), 65-57. (in Persian)
 
Anon. (2007). Dried Fruit, FAO-AGS. FAO: 14.
 
Ansarifar, M. H., Aghkhani, M. H., Golzarian, M. R., & Tabasi Zade, M. (2016). Investigation of mazafati dates species drying kinetics and effective moisture diffusivity under the cabinet solar dryer. Journal of Food Science and Technology (Iran), 13(56). (in Persian)
 
Ayoubi, A., Sedaghat, N., Kashaninejad, M., Mohebbi, M., & Nassiri Mahalati, M. (2016). Investigation the effect of cabinet drying conditions and different pretreatments on drying rate of grape and quality of raisin. Journal of Food Science and Technology (Iran), 12(2(38)), 226-238. (in Persian)
 
Behroozi-Khazaei, N., & Darvishi, H. (2019). Mathematical modeling of drying kinetic of strawberry slice in microwave-hot air dryer. Iranian Journal of Biosystems Engineering, 50(3), 523-533. DOI:10.22059/IJBSE.2019.271750.665134. (in Persian)
 
 Darvishi, H., Zarein, M., & Farhudi, Z. (2016). Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices. Journal of Food Science and Technology (Iran), 53, 2317-2333. (in Persian)
 
Demirbas, M. (2006). Thermal energy storage and phase change materials: An overview. Energy Sources, Part B, 1, 85-95.  DOI:10.1080/009083190881481.
 
Esakkimuthu, S., Hassabou, A., Palaniapan, C., Spinnler, M., Blumenberg, J., & Velraj, R. (2013). Experimental investigation on phase change material based thermal storage system for solar air heating applications. Solar Energy, 88, 144-153.  DOI:10.1016/j.solener.2012.11.006.
 
Gawałek, J. (2022). Pray drying of chokeberry juice-antioxidant phytochemicals retention in the obtained powders versus energy consumption of the process. Foods, 11(18), 2898.  DOI:10.3390/foods11182898.
 
Ghasemkhani, H., Rafiee, S., Keyhani, A., & Dalvand, M. J. (2019). Evaluation of drying of apple slices in a rotating-tray air dryer equipped with heat exchanger. Journal of Researches in Mechanics of Agricultural Machinery, 7(2(13)). (in Persian)
 
Gholami Parshokohi, M., Merzanezhad, E., Ahmad Beigi, A. H., & Salimi Bani, M. (2018). Influence of temperature and air velocity changes on drying process of peanut in hot air dryer. Journal of Food Technology and Nutrition, 15(3), 107-115. (in Persian)
 
Gitiban, A., & Asefi, N. (2019). Modeling of hardness and drying kinetics of "quince" fruit drying in an infrared convection dryer using the artificial neural network. Journal of Food Science and Technology (Iran), 15(4), 465-475.  DOI:10.22067/ifstrj.v15i4.76323. (in Persian)
 
Hasani, A., Khoshtaghaza, M. H., & Ebadi, M. T. (2020). Effect of different drying methods (microwave drying, shade and sun drying) on the quality of sumac fruit (Rhus coriaria L.). Iranian Journal of Medicinal and Aromatic Plants, 36(1), 142-154.  DOI:10.22092/ijmapr.2019.125302.2511. (in Persian)
 
Jannatkhah, j., Ghaebi, h., & Najafi, b. (2018).Design and development of asolar dryer augmented with phase change materials (PCM). Agricultural Mechanization and Systems Research (Journal of Agricultural Engineering Research), 18(68), 89-106.  DOI:10.22092/erams.2017.106302.1092. (in Persian)
 
Karami, A. (2019). Analysis of the Consequences of the Establishment of Transformational and Complementary Industries in the Agricultural Sector, Case: The Central Part of Jiroft City. Journal Space Economy & Rural Development, 8(28), 223-238. (in Persian)
 
Kaveh, M. (2017). Using artificial neural networks (ANNs) method in investigation and estimation of some drying characteristics of eggplant and turnip in a combined microwave – convective dryer. Journal of Food Science and Technology (Iran), 70, 27-45. (in Persian)
 
 Kaveh, M., Golpour, I., Gonçalves, J. C., Ghafouri, S., & Guiné, R. (2021). Determination of drying kinetics, specific energy consumption, shrinkage, and colour properties of pomegranate arils submitted to microwave and convective drying. Open Agriculture, 6(1), 230-242.  DOI:10.1515/opag-2020-0209.
 
Kaveh, M., Jahanbakhshi, A., Golpour, I., Gandshmin, T., Abbaspour-Gilandeh, Y., & Jahedi Rad, S. (2019). Prediction of white mulberry drying kinetics in microwave convective dryer: A comparative study between mathematical model, artificial neural network and ANFIS. Journal of Food Science and Technology (Iran), 16(88), 201-219. (in Persian)
 
Khayati, S., & Amiri Chayjan, R. (2016). Prediction of some thermal, physical and mechanical properties of terebinth fruit after semi-industrial continuous drying using artificial neural networks. Journal of Food Science and Technology (Iran), 13(52), 161-172. (in Persian)
 
Kholghi Eshkalak, A., Ghasemnezhad, M., Fotouhi Ghazvini, R., & Sabouri, A. (2021). The study of bud break percentage and aberrant fruit shape incidence in some Hayward kiwifruit vineyard in Guilan Province. Journal of Plant Production Research, 28(2), 167-181. DOI:10.22069/JOPP.2021.18070.2678. (in Persian)
 
Khoshtaghaza, M. H., Darvishi, H., & Minaei, S. (2015). Effects of microwave - fluidized bed drying on quality, energy consumption and drying kinetics of soybean kernels. Journal of Food Science and Technology (Iran), 52(8), 4749-4760. (in Persian)
 
Komble, S. P., Kulkarni, G. N., &  Sewatkar, C. M. (2021). Experimental investigation of solar drying characteristics of grapes. Proceedings of the 7th International Conference on Advances in Energy Research. Singapore. DOI:10.1007/978-981-15-5955-6_50.
 
Kumar, A., Kandasamy, P., Chakraborty, I., & Hangshing, L. (2022). Analysis of energy consumption, heat and mass transfer, drying kinetics and effective moisture diffusivity during foam-mat drying of mango in a convective hot-air dryer. Biosystems Engineering, 219, 85-102.  DOI:10.1016/j.biosystemseng.2022.04.026.
 
Mohammadi, I., Tabatabaekoloor, R., & Motevali, A. (2019). Investigating some quality and thermodynamic parameters of kiwifruit thin layer drying in an air recycling dryer equipped with heat pump. Iranian Journal of Biosystems Engineering (Iranian Journal of Agricultural Sciences), 50(2), 331-342. DOI:10.22059/IJBSE.2019.257420.665060. (in Persian)
 
Nwakuba, N., Asoegwu, S., & Nwaigwe, K. (2017). Energy consumption of agricultural dryers: an overview. Agricultural Engineering International: CIGR Journal, 18(4), 119-132.
 
Ozgen, F., & Celik, N. (2019). Evaluation of design parameters on drying of kiwi fruit. Applied Sciences, 9(1), 10.  DOI:10.3390/app9010010.
 
 Razavi, S. M. J., Talebpour, M., Azimzadeh, M., & Mohammadkazemi, R. (2021). Identifying and prioritizing factors involved in human capital development in Iran's sports production firms using multi-criteria analysis and Copland's approach. Human Resource Management in Sport Journal, 8, 1-17. DOI:10.22044/shm.2020.8079.1932. (in Persian)
 
Safari, M., Amiri Chayjan, R., & Alaei, B. (2017). Modeling some properties of almond kernels in a semi industrial continuous dryer. Journal of Food Science and Technology (Iran), 14(65), 25-38. (in Persian)
 
Sheykhani Nejad Fallah, Z., Zanganeh, M. & Banaeian, N. (2023). Feasibility study of completing the kiwifruit value chain by forming a cooperative of dryer workshops in the province of guilan (M. Sc. Thesis), University of Guilan. (in Persian)
 
Shokhi, Z., Sahneh, B., & Najafi Kani, A. A. (2022). The role of conversion and complementary industries (processing of date products) in improving the sustainable livelihood of rural households for study: villages of ghirokarzin [applicable]. Arid Regions Geographic Studies, 12(46), 31-52. (in Persian)
 
Taghinezhad, E., Kaveh, M., Khalife, E., & Chen, G. (2020). Drying of organic blackberry in combined hot air-infrared dryer with ultrasound pretreatment. Drying Technology, 39(14), 2075-2091, DOI: 10.1080/07373937.2020.1753066.
 
Vartehparvar, V., Kianmehr, M. H., Arabhosseini, A., & Hasan Beygi, S. R. (2014). Exergy analysis of combined fluidized-fix bed dryer. Nashrieh Shimi Va Mohandesi Shimi Iran (Persian), 32(2(68)), 47-55. (in Persian)
 
Yousefi, G., Djomeh, Z. E., & Karami, Z. (2016). Modeling and optimization of effective factors in drying on quality properties of black raspberry (Rabus Fruticocus L.) With response surface methodology. Journal of Food Science and Technology (Iran), 1, 53-65.  (in Persian)