نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

2 دانشیار گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

3 استادیار گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

4 دانشیار گروه مهندسی ماشین‌های کشاورزی و مکانیزاسیون، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران

چکیده

تعیین غلظت (عیار) قند برای ارزیابی کیفیت چغندرقند در کارخانه­های قند اهمیت زیادی دارد و مبنای
ارزش­گذاری چغندرقند نیز محسوب می­شود. در این مطالعه، با هدف برآورد درجۀ بریکس به عنوان یکی از شاخص­های سنجش عیار قند چغندر، یک حسگر دی
الکتریک مجاورتی توسعه داده شد و ارزیابی گردید. این حسگر از نوع کواکسیال انتها-باز بوده که از دو الکترود فلزی دایره­ای هممرکز تشکیل شده و با استفاده از آن طیفهای دامنه بر حسب بسامد در بازه صفر تا 150 مگاهرتز برای هر نمونه چغندر استخراج شد. به منظور ارزیابی حسگر، 100 نمونه چغندرقند انتخاب و بریکس معیار در هر نقطه اندازه­گیری با حسگر دی­الکتریک، با استخراج عصاره از آن با استفاده از دستگاه رفرکتومتر اندازه­گیری شد. نتایج به­ دست آمده نشان داد که در محدوده­های بسامدی 50-30 و 140-120 مگاهرتز، طیفهای دیالکتریک با تغییرات درصد بریکس تغییر قابل توجهی دارد به طوری‌که با افزایش بریکس، دامنۀ طیف کاهش می­یابد. ضمن ارزیابی روش­های مختلف رگرسیونی، روش رگرسیون حداقل مربعات جزئی PLSR توانست درصد بریکس نمونه­ها را با ضریب تبیین اعتبارسنجی 81/0 و خطای 72/0 درجه بریکس پیش­بینی کند. نتایج حاصل همچنین نشان داد، این حسگر و روش اندازهگیری مورد مطالعه میتواند به عنوان روشی ساده و قابل اعتماد برای اندازهگیری درصد بریکس چغندرقند به­ کار گرفته شود.

کلیدواژه‌ها

 
Aghaei sadi, M., Minaei, S., Jamshidi, B., & Abdollahian Noghabi, M. (2018). Non-destructive evaluation of sugar content using a combination of near-infrared spectroscopy (NIRS) and chemometrics methods. Iranian Journal of Biosystems Engineering, 49(1), 9-18. (in Persian)
Alomar, S., Mireei, S. A., Hemmat, A., Masoumi, A. A., & Khademi, H. (2021). Comparison of Vis/SWNIR and NIR spectrometers combined with different multivariate techniques for estimating soil fertility parameters of calcareous topsoil in arid climate. Biosystems Engineering, 201, 50-66
Anon. (2021). Statistical yearbook 2021. Food and Agricultural Organization of United Nations. Rome.
Bagheri, R., Mireei, S. A., Sadeghi, M., Masoumi, A., & Moomkesh, Sh. (2014). Non-destructive dielectric
method to measure moisture of date. Iranian Journal of Biosystems Engineering, 45(2): 97-104. (in Persian)
Bagherpour, H., & Mohammadi Monovar, H. (2017). Non-destructive determinaion of moisture content and brix value in carrot using near infrared spectroscopy (NIRS). Biosystems Engineering, 48(1), 1-7.
(in Persian)
Bagherpour, H., Minaei, S., Abdollahian Noghabi, M., & Khorasani Fardvani, M. E. (2014). Non-destructive determination of sugar content in root beet by near infrared spectroscopy (NIRS). Iranian Journal of Food Science and Technology, 12(46), 219-228. (in Persian)
Bahrami. M. E., Honarvar, M., Ansari, K., & Jamshidi, B. (2020). Measurement of quality parameters of sugarbeet juices using near-infrared spectroscopy and chemometrics. Journal of Food Engineering. 271, 109775
Bhosale, A. A. 2017. Detection of sugar content in citrus fruits by capacitance method. Procedia Engineering, 181, 466-471
Deby, P. (1929). Polar molecules. Dover Pub. Inc. New Yourk 60.
Hayati, A., Raofat, M. H., Kamgar, S., & Jahani, F. (2018). Feasability of using electrical capacitance for determining the fruit ripeness of apple. Biosystems Engineering, 46(2): 195-203. (in Persian)
Hoog, N. A., Olthuis, W., Mayer, M. J. J., Yntema, D., Miedema, H., & Van-Den-Berg, A. (2012). On-line fingerprinting of fluids using coaxial stub resonator technology. Sensors and Actuators B: Chemical, 163, 90-96.
Fazayeli, A., Kamgar, S., Nassiri, S. M., Fazayeli, H., & Guardia M. D. L. (2019). Dielectric spectroscopy as a potential technique for prediction of kiwifruit quality indices during storage. Information Processing in Agriculture, 6(4), 479-486.
Gregory, A. P., Seppala, J., & Lahtinen, T. (2017). Open-ended coaxial dielectric probe effective penetration depth determination. IEEE Transactions of Microwave Theory and Technology, 64(3), 915-923.
Haghshenas, A., Mireei, S. A., Sadeghi, M., & Nazeri, M. (2019). Nondestructive firmness estimation of tomato fruit using near infrared spectroscopy. Journal of Crop Production and Processing, 9(3),
113-123. (in Persian)
Hoog, N. A. (2014). Stub resonators transmission line based water sensors (Ph. D. Thesis), University of Twente. The Netherlands
Anon. (2022). Iranian Sugar Factories Syndicate (INFS). http://ISFS.ir.
Jha, S. N., Narsaiah, K., & Basediya, A. L. (2011). Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods- a review. Journal of Food Science and Technology, 48(4), 387-411.
Khalilian, H., Ghasemi-Varnamkhasti, M., Naderi-Boldaji, M., & Rostami, S. (2017). Developing and testing of a cylindrical dielectric sensor for measuring sugar concentration of sugar beet syrup. Iranian Journal of Biosystems Engineering, 48(1), 137-144. (in Persian)
Li, X., He, Y., Wu, C., & Sun, D. (2007). Nondestructive measurement and fingerprint analysis of soluble solid content of tea soft drink based on vis/nir spectroscopy. Journal of Food Engineering, 82, 316-323.
Mesbahi, G. (2015). Fundamentals of sugar processing technology. Nashr Iran Press, Iran. (in Persian)
Moomkesh, Sh., Mireei, S. A., Sadeghi, M., & Nazeri, M. (2016). Non-destructive prediction of quality parameters of sweet lemon (citrus limetta) by VIS/SWNIR spectroscopy. Biosystems Engineering, 47(4), 603-613. (in Persian)
Mireei, A., Bagheri, R., Sadeghi, M., & Shahraki, A. (2016). Developing an electronic portable device based on dielectric power spectroscopy for nondestructive prediction of date moisture content. Sensors and Actuators A. Physical, 247, 289- 297. (in Persian)
Naderi-Boldaji, M., Fazeliyan-Dehkordi, M., Mireei, S. A., & Ghasemi-Varnamkhasti, M. (2015). Dielectric power spectroscopy as a potential technique for the non-destructive measurement of sugar concentration in sugarcane. Biosystems Engineering, 140, 1-10.
Nelson, S. O. (2006). Agricultural applications of dielectric measurements. IEEE Transactions on Dielectrics and Electrical Insulation, 13, 688-702.
Nelson, S. O., & Trabelsi, S. (2012). Factors influencing the dielectric properties of agricultural and food products. Journal of Microwave Power and Electromagnetic Energy, 46(2), 93-107.
Williams, P. C., & Norris, K. (2001). Near-infrared technology in the agricultural and food industry. St. Paul, MN: American Association of Cereal Chemists, Inc.
Zaki Dizaji, H., Adibzadeh, A., & Aghili Nategh, N. (2020). Application of E-nose technique to predict sugarcane syrup quality based on purity and refined sugar percentage. Journal of Food Science and Technology, 58, 4149-4156.