بهینه سازی مصرف انرژی و کاهش کاهش آلاینده های محیط زیست درتولید کلوچه با استفاده از تکنیک های تحلیل پوششی داده ها و الگوریتم ژنتیک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی ماشین‌های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانش آموخته کارشناسی ارشد گروه مهندسی ماشین‌های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

3 دانشجوی دکتری گروه مهندسی ماشین‌های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

در این پژوهش به بررسی میزان مصرف انرژی و انتشار آلاینده­های زیست­محیطی در تولید کلوچه در استان گیلان پرداخته شده است. روش‌های بهینه­سازی مصرف انرژی به­منظور کاهش کاهش آلاینده­های محیط زیست با استفاده از دو روش مرسوم تحلیل پوششی داده­ها و الگوریتم ژنتیک چندهدفه ارائه گردید.بدین منظور، اطلاعات لازم از 30 واحد تولید کلوچه استخراج و به­عنوان داده­های اولیه در تحلیل‌های انرژی و زیست­محیطی به­کار گرفته شد. با استفاده از رویکرد ارزیابی چرخۀ زندگی، تأثیرات زیست­محیطی تولید کلوچه بررسی شد. نهاده­ها و ستانده بر اساس هم­ارزهای انرژی به انرژی‌های معادل تبدیل شدند. نتایج این پژوهش نشان می­دهد که 66/30533 مگاژول انرژی برای تولید هر تن کلوچه مصرف می­شود. بیشترین سهم انرژی مصرفی به گاز طبیعی با 28/16945 مگاژول به­ازای هر تن کلوچۀ تولیدی ارتباط دارد. طبق نتایج ارزیابی چرخۀ زندگی، شاخص گرمایش جهانی برای تولید هر تن کلوچه09/3732 کیلوگرم کربن­دی اکسید معادل تعیین گردید. بر اساس نتایج مدل­های تحلیل پوششی داده­ها، میزان کل انرژی مورد نیاز در حالت مصرف بهینۀ نهاده­ها، درصد صرفه‌جویی انرژی و کاهش شاخص گرمایش جهانی به­ترتیب برابر 58/30221 مگاژول در تن، 02/1 درصد و 37/190 کیلوگرم کربن دی­اکسید معادل به­ازای تولید یک تن کلوچه به­دست آمد. همچنین، اجرای الگوی پیشنهادی توسط الگوریتم ژنتیک چند­هدفه مصرف انرژی را 62/21 درصد کاهش می دهد که بیشترین درصد صرفه­جویی در انرژی در مصرف گردو در تولید کلوچه دیده­ شده­ است. بر اساس نتایج بهینه­سازی چندهدفه، میزان شاخص گرمایش جهانی به­ازای تولید یک تن کلوچه برابر 74/2923 کیلوگرم کربن­دی اکسید معادل تعیین شد.

کلیدواژه‌ها


Abolshikhi, M. 2014. Study of life cycle of bread production-case study: Ray county, Tehran.  M. Sc. Thesis. University of Tehran. Karaj. Iran. (in Persian)

 

Andersson, K. and Ohlsson, T. 1999. Life cycle assessment of bread produced on different scales.  Int. J. Life Cycle Assess. 4(1): 25-40.

 

Anon. 2006. Environmental Management- Life Cycle Assessment- Principles and Framework- ISO 14040.

 

Anon. 2014. Results of the survey design from industrial workshops of 10-49 employees. National Statistics Organization. Available at: https://www.amar.org.ir. (in Persian)

 

Anon. 2017. USDA Food Composition Databases. United States Department of Agriculture. Agricultural Research Service. Available at: https://ndb.nal.usda.gov.

 

Baum, A. W., Patzek, T., Bender, M., Renich, S. and Jackson, W. 2009. The visible, sustainable farm: A comprehensive energy analysis of a Midwestern farm. Crit. Rev. Plant Sci. 28(4): 218-239.

 

Bimpeh, M., Djokoto, E., Doe, H. and Jequier, R. 2006. Life cycle assessment (lca) of the production of homemade and industrial bread in Sweden. KTH, Life Cycle Assessment Course (1N1800).

 

Braschkat, J., Patyk, A., Quirin, M. and Reinhardt, G. A. 2004. Life cycle assessment of bread production-a comparison of eight different scenarios. DIAS report.

 

Canakci, M., Topakci, M., Akinci, I. and Ozmerzi, A. 2005. Energy use pattern of some field crops and vegetable production: case study for Antalya region, Turkey. Energy Convers. Manage. 46(4): 655-666.

 

Charnes, A., Cooper, W. W.and Rhodes, E. 1978. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 2(6): 429-444.

 

Cooper, W. W., Seiford, L. M. and Zhu, J. 2004. Data envelopment analysis. Handbook on data envelopment analysis. Springer US.

 

Cooper, W. W., Ruiz, J. L. and Sirvent, I. 2007. Choosing weights from alternative optimal solutions of dual multiplier models in DEA. Eur. J. Oper. Res. 180(1): 443-458.

 

Davis, L. 1991. A Review of: Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold. ISBN 0-442-00173-8.

 

Drake, L. and Howcroft, B. 1994. Relative efficiency in the branch network of a UK bank: an empirical study. Omega. 22(1): 83-90.

 

Erdal, G., Esengün, K., Erdal, H. and Gündüz, O. 2007. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy. 32(1): 35-41.

 

Espinoza-Orias, N., Stichnothe, H. and Azapagic, A. 2011. The carbon footprint of bread. Int. J. Life Cycle Assess. 16(4): 351-365.

 

Farrell, M. J. 1957. The measurement of productive efficiency. J. R. Stat. Soc. Series A (General). 120(3): 253-290.

 

Geerken, T. H., Scholliers, D., De Vooght, C., Spirinckx, V., Van Holderbeke, M. and Vercalsteren, A. 2006. Analysis of the 4 Cases 1/5. Case Study: Bread, Sustainability Developments of Product Systems, 1800-2000. The Belgian Science Policy.

 

Ghasemi-Mobtaker, H., Akram, A., Keyhani, A. and Mohammadi, A. 2012. Optimization of energy required for alfalfa production using data envelopment analysis approach. Energy Sustain. Dev. 16(2): 242-248.

 

Guinée, J. B. 2002. Handbook on life cycle assessment operational guide to the ISO standards. Int. J. Life Cycle Assess. 7, 311-313.

 

Hosseinzadeh-Bandbafha, H., Safarzadeh, D., Ahmadi, E., Nabavi-Pelesaraei, A. and Hosseinzadeh-Bandbafha, E. 2017. Applying data envelopment analysis to evaluation of energy efficiency and decreasing of greenhouse gas emissions of fattening farms. Energy. 120, 652-662.

 

Karakaya, A. and Özilgen, M. 2011. Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes. Energy. 36(8):
5101-5110.

 

Khatir, Z., Taherkhani, A. R., Paton, J., Thompson, H., Kapur, N. and Toropov, V. 2015. Energy thermal management in commercial bread-baking using a multi-objective optimisation framework.  Appl. Therm. Eng. 80, 141-149.

 

Kitani, O. 1999. CIGR handbook of agricultural engineering. Energy and Biomass Engineering, ASAE Pub. St Joseph, MI.

 

Kulak, M., Nemecek, T., Frossard, E., Chable, V. and Gaillard, G. 2015. Life cycle assessment of bread from several alternative food networks in Europe. J. Clean. Prod. 90, 104-113.

 

Maupu, P., Berthoud, A., Négri, O., Leguereau, B., Gely, B. and Poupart, A. 2012. Traceability of environmental information all along the cereal industry: from the wheat field to the bakery. Proceedings of the 2nd LCA Conference. Nov. 6-7. Lille, France.

 

Mousavi-Avval, S. H., Rafiee, S., Jafari, A. and Mohammadi, A. 2011. Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. Appl. Energy. 88(11): 3765-3772.

 

Namdari, M. 2015. Optimization of sugar beet production using colonial competition algorithm and life cycle assessment of sugar production.  Ph. D. Thesis. University of Tehran. Karaj, Iran. (in Persian)

 

Nia-Jalili, M., Nakhashzadegan, M., Haghighi-Pashiri, A. and Hossein-Nia, S. M. 2013. Investigating the potential of wind and solar energy in Guilan province. Proceedings of The 3rd Conference on Renewable Energies and Scattered Iran Production. April 10-11. Isfahan, Iran. (in Persian)

 

Notarnicola, B., Tassielli, G., Renzulli, P. A. and Monforti, F. 2017. Energy flows and greenhouses gases of EU (European Union) national breads using an LCA (Life Cycle Assessment) approach. J. Clean. Prod. 140, 455-469.

 

Ozkan, B., Akcaoz, H. and Fert, C. 2004. Energy input–output analysis in Turkish agriculture. Renew. Energy. 29(1): 39-51.

 

Qaseri, K., Mehrno, H. and Jafari, A., 2007. Introduction to Fuzzy Data Envelopment Analysis. Islamic Azad University, Qazvin Branch, Iran. (in Persian)

 

Rajaeifar, M. A., Tabatabaei, M., Ghanavati, H., Khoshnevisan, B. and Rafiee, S. 2015. Comparative life cycle assessment of different municipal solid waste management scenarios in Iran. Renew. Sust. Energy Rev. 51, 886-898.

 

Ronald, K. K. and Samuel J. R. 2008. Modeling Data Envelopment Analysis (DEA) efficient location allocationdecision. Comput. Oper. Res. 35(2): 457-474

 

Shamshirband, S., Khoshnevisan, B., Yousefi, M., Bolandnazar, E., Anuar, N. B., Wahab, A. W. A. and Khan, S. U. R. 2015. A multi-objective evolutionary algorithm for energy management of agricultural systems- a case study in Iran. Renew. Sust. Energy Rev. 44, 457-465.

 

Taki, M., Ajabshirchi, Y., and Mahmoudi, A. 2012. Prediction of output energy for wheat production using artificial neural networks in Esfahan province of Iran. J. Agric. Tech. 8(4): 1229-1242.

 

Thankappan, S. 2003. Modelling sustainable energy use for smallholder agriculture in Gujarat: a multi-objective programming approach.  Ph. D. Thesis. University of Wales, Aberystwyth.

 

Therkelsen, P., Masanet, E. and Worrell, E. 2014. Energy efficiency opportunities in the US commercial baking industry. J. Food Eng. 130, 14-22.