نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان‌شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تبریز، ایران.

2 استادیار گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 دانشیار بخش تحقیقات ماشین‌های کشاورزی، مؤسسه فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

10.22092/amsr.2024.363663.1462

چکیده

خشک کردن با هوای گرم متداول‌ترین روش برای محصولات کشاورزی است که زمان‌بر است و مصرف انرژی بالایی دارد. به دلیل خشک شدن سریع سطح محصول در روش خشک کردن همرفتی، توزیع و انتقال حرارت و رطوبت در داخل محصول نسبتاً غیریکنواخت است. در میوه‌هایی مانند زردآلو پوشش مومی موجود روی پوست میوه اثر کنترل‌کننده و بازدارنده‌ای در فرایند خشک کردن دارد. از این‌رو، استفاده از بعضی روش­های ترکیبی در خشک کردن میوه­هایی مانند زردآلو می‌تواند زمان خشک شدن  و انرژی مصرفی را کاهش دهد. در پژوهش حاضر خشک‌کن همرفتی به سیستم پرتو‌‌دهی فروسرخ مجهز و اثر ترکیب هوای گرم و پرتوهای فروسرخ در حالت‌های مختلف در خشک کردن زردآلو ارزیابی و مقایسه شد. آزمایش‌ها با تیمارهای هوای گرم و پرتوهای فروسرخ به‌تنهایی، هم‌زمان و در ترکیب دومرحله‌ای و متناوب پرتوهای فروسرخ در یک خشک‌کن ترکیبی در مقیاس آزمایشگاهی اجرا شد. دمای هوای گرم 65 درجة سلسیوس، سرعت هوای گرم 5/1 متر بر ثانیه و توان لامپ‌های فروسرخ 400 وات انتخاب شد. نتایج پژوهش نشان داد که زمان خشک شدن، انرژی مصرفی و ضریب نفوذ مؤثر رطوبت به ­طور معنی‌داری تحت تأثیر تیمارها قرار می­گیرند. مدل میدیلی و همکاران به­ خوبی توانست رفتار خشک کردن زردآلو را برای همۀ حالت‌های مختلف ترکیبی تحت بررسی توصیف کند.

کلیدواژه‌ها

Abbasi, S., Minaei, S., & Khoshtaghaza, M. H. (2014). Investigation of kinetics and energy consumption thin layer drying of corn. Journal of Agricultural Machinery, 4(1), 98-107. https://doi.org/10.22067/jam.v4i1.33171. (in Persian)
Aghbashlo, M., Kianmehr, M. H., Khani, S., & Ghasemi, M. )2009(. Mathematical modeling of carrot thin-layer drying using new model. International Agrophysics, 23, 313-317.
Aktash, M., Sevik, S., Amini, A., & Khanlari, A. (2017). Experimental analysis and CFD simulation of infrared apricot dryer with heat recovery. Drying Technology, 35(6), 1532-2300. https://doi.org/10.1080/07373937.2016.1212871.
An, K., Zhao, D., Wang, Z., Wu, J., Xu, Y., & Xiao, G. (2016). Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chemistry, 197, 1292-1300. https://doi.org/10.1016/j.foodchem.2015.11.033.
 
Anon. )2021(. World food and agriculture- Statistical yearbook. FAO Rome.
Bardy, E., Hamdi, M., Havet, M., & Rouaud, O. (2015). Transient exergetic efficiency and moisture loss analysis of forced convection drying with and without electro hydrodynamic enhancement. Energy, 89, 519-527. https://doi.org/10.1016/j.energy.2015.06.017.
Chinenye, N. M., Ogunlowo, A. S., & Olukunle, O. J. (2010). Cocoa bean (Theobroma caco L.) drying kinetics. Chilean Journal of Agricultural Research, 70, 633-639.
Corzo, O., Bracho, N., Perelra, A., & Vasquez, A. (2008). Weibull distribution for modelling air drying of coroba slices. LWT – Food Science and Technology, 41, 2023-2028. https://doi.org/10.1016/j.lwt.2008.01.002.
Crank, J. (1975). Mathematics of diffusion. 2nd Ed. London: Oxford University Press.
Dehghannya, J., Hosseinlar, S., & Heshmati, M. K. (2018). Multi-stage continuous and intermittent microwave drying of quince fruit coupled with osmotic dehydration and low temperature hot air drying. Innovation Food Science and Emerging Technologies, 45, 132-151. https://doi.org/10.1016/j.ifset.2017.10.007.
Doymaz, I. (2007). Influence of pretreatment solution on the drying of sour cherry. Food Engineering, 78, 591-596. https://doi.org/10.1016/j.jfoodeng.2005.10.037.
Doymaz, I. (2012). Drying of pomegranate seeds using infrared radiation. Food Science and Biotechnology, 21, 1269-1275.
Falade, K. O., & Ogunwolu, O. S. (2014). Modeling of drying patterns of fresh and osmotically pretreated cooking banana and plantain slices. Journal of Food Process Preservation, 38, 373-388.  
Hebbar, H. U., Vishwanathan, K., & Ramesh, M. N. (2004). Development of combined infrared and hot air dryer for vegetables. Journal of Food Engineering, 65, 557-563. https://doi.org/10.1016/j.jfoodeng.2004.02.020.
Horuz, E., Bozkurt, H., Karatash, H., & Maskan, M. (2017). Drying kinetics of apricot halves in a Microwave‑hot air hybrid oven. Heat Mass Transfer, 53, 2117-2127. https://doi.org/10.1111/j.1745-4549.2012.00785.x.
Ivanova, D., Valov N., Valova I., & Stefanova, D. (2017). Optimization of convective drying of apricots. TEM Journal, 6(3), 572-577. https://doi.org/10.18421/TEM63-19.
Izli, N., Yildiz, G. O., Unal, H., Isik, E., & Uylaser, V. (2014). Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of golden berry (Physalis peruviana L.). International Journal of Food Science and Technology, 49, 9-17. https://doi.org/10.1111/ijfs.12266.
Kayran, S., & Doymaz, I. (2017). Infrared drying and effective moisture diffusivity of apricot halves: Influence of pretreatment and infrared power. Journal of Food Processing and Preservation, 00, 1-8. https://doi.org/10.1111/jfpp.12827.
Khir, R., Pan, Z., Salim, A., Hartsough, B. R., & Mohamed, S. (2011). Moisture diffusivity of rough rice under infrared radiation drying. LWT-Food Science and Technology, 44(4), 1126-1132. https://doi.org/10.1016/j.lwt.2010.10.003.
Kocabiyik, H., Yilmaz, N., Tuncel, N. B., Sumer, S.K., & Buykcan, N. B. (2015). Drying, energy, and some physical and nutritional quality properties of tomatoes dried with short-infrared radiation. Food Bioprocess Technology, 8, 516-525.
Łechtańska, J. M., Szadzińska, J., & Kowalski, S. J. (2015). Microwave- and infrared-assisted convective drying of green pepper: Quality and energy considerations. Chemical Engineering and Processing: Process Intensification, 98, 155-164. https://doi.org/10.1016/j.cep.2015.10.001.
Lopez, A., Iguaz, A., Esnoz, A., & Vireda P. (2000). Thin-layer drying behavior of vegetable waste from wholesale market. Drying Technology, 18, 995-1006. https://doi.org/10.1080/07373930008917749.
Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20, 1503-1513.
Mirzaee, E., Rafiee, S, Keyhani, A., & Emam-Djomeh, Z. (2009). Determining of moisture diffusivity and activation energy in drying of apricots. Research in Agricultural Engineering, 55(3), 114-120. https://doi.org/10.17221/8/2009-RAE.
Mosavi Bayegi, S. F., Farahmand, A., Taghizadeh, M., & Ziaforoughi, A. (2016). Modeling of thin layer drying of persimmon by hot air and infrared methods. Journal of Food Science and Technology (Iran), 53(13), 161-171. (in Persian)
Onwude, D. I., Hashim, N., Abdan, K., Janius, R., & Chen, G. (2018). The effectiveness of combined infrared and hot-air drying strategies for sweet potato. Journal of Food Engineering, 241, 75-87. https://doi.org/10.1016/j.jfoodeng.2018.08.008.
Onwude, D. I., Hashim, N., Janius, R., Abdan, K., Chen, G., & Oladejo, A.O. (2017). Non- thermal hybrid drying of fruits and vegetables: A review of current technologies. Innovation Food Science and Emerging Technologies, 43, 223-238. https://doi.org/10.1016/j.ifset.2017.08.010.
Onwude, D.I., Hashim, N., & Chen, G. (2016). Recent advances of novel thermal combined hot air drying of agricultural crops. Trends Food Science Technology, 57, 132-145. https://doi.org/10.1016/j.tifs.2016.09.012.
Ozkan, M, Kirca, A., & Cemeroglu, B. (2003). Effect of moisture content on CIE color values in dried apricots. European Food Research and Technology, 216, 217-219. https://doi.org/10.1007/s00217-002-0627-6.
Rekabi, M., Abbaspourfard, M. H., & Mortezapour, H. (2016). Investigating the energy consumption and drying time of pistachios in combined solar-infrared dryer. Agricultural Engineering (Scientific Journal of Agriculture), 39(2), 18-32. https://doi.org/10.22055/agen.2017.12552. (in Persian)
Salehi, F. (2018). Mathematical modelling of thin‐layer drying of apricot in infrared dryer. Proceedings of the 11th National Congress on Mechanical Engineering, Biomaterials and Mechanization. Sep. 3. Bu-Ali Sina University, Hamadan, Iran. (in Persian)
Satorabi, M., Salehi, F., & Rasouli, M. (2021). The Influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling. International Journal of Fruit Science, 21(1), 468-480. https://doi.org/10.1080/15538362.2021.1898520.
Unal, H. G., & Sacilik, K. (2011). drying characteristics of hawthorn fruits in a convective hot-air dryer. Journal of Food Processing and Preservation, 35, 272-279. https://doi.org/10.1111/j.1745-4549.2009.00451.x.
Wang, C.Y. & Singh, R.P. (1978). A single layer drying equation for rough rice. ASAE Paper No: 78-3001, St. Joseph, MI: ASAE.
Zhang, M., Chen, H., Mujumdar, A. S., Tang, J., Miao, S., & Wang, Y. (2017). Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition, 57(6), 1239-1255. https://doi.org/10.1080/10408398.2014.979280.
Zogzas, N. P., Maroulis, Z. B., & Marinos Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14, 2225-2253. https://doi.org/10.1080/07373939608917205.