نوع مقاله : مقاله پژوهشی

نویسنده

استادیار پژوهشی، بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

چکیده

هدف از این پژوهش، ساخت و ارزیابی سامانۀ بینایی ماشین برای تعیین درصد شکستگی و تعداد بذر گندم است. این سامانه از سه بخش مکش، نمونه­برداری و تصویربرداری تشکیل و برای دو رقم گندم ترابی و آذر ارزیابی شده­ است. در هر رقم گندم، عملکرد دستگاه مکش، با دو صفحۀ بذر و چهار مقدار مکش بررسی شد. در هر مقدار مکش، تعداد بذر­های جدا شده و بذر­های به ­هم چسبیده روی هر سوراخ شمارش و درصد آنها محاسبه شد. تصویر تهیه شده توسط دوربین دیجیتال، به محیط نرم­افزار متلب منتقل و الگوریتم تعیین درصد شکستگی و تعداد بذر گندم کدنویسی و ارائه شد. نتایج بررسی­ها نشان داد که مناسب­ترین تیمار برای گندم رقم ترابی، صفحۀ بذر با سوراخ 1 میلی­متر و مکش 100- میلی­متر جیوه با درصد بذرهای جدا شده 31/95 و درصد بذرهای به ­هم چسبیده 69/4 است. برای رقم آذر، صفحۀ بذر با سوراخ 1 میلی­متر و مکش 120-میلی­متر جیوه با درصد بذرهای جدا شده 6/91 و درصد بذرهای به­ هم چسبیده 4/8 مناسب­ترین تیمار است. نتایج اعتبارسنجی الگوریتم نشان داد که دقت آن برای تعیین درصد شکستگی و تعداد بذر گندم به­ ترتیب برابر با 33/85 و 76/98 درصد است.

کلیدواژه‌ها

Amiryousefi, M. R., Mohebbi, M. & Tehranifar, A. (2018). Pomegranate seed clustering by machine vision. Food science and nutrition, 6(1), 18-26.
 
Ghaderifar, F., & Soltani, A. (2010). Seed control and certification. Publications of Mashhad University – Jahad. (in Persian)
 
Granitto, M., Navone, D., Verdes, F., & Ceccatto, H. A. (2002). Weed seeds identification by machine vision. Computers and Electronics in Agriculture, 33(2), 91-103.
 
Gunasekaran, S., Cooper, T. M., & Berlage, A. G. (1988). Evaluating quality factors of corn and soybeans using a computer vision system. Transactions of the ASAE, 31(4), 1264-1271.
 
Kapadia, V. N., Sasidharan, N., & Kalyanrao, P. (2017). Seed image analysis and its application in seed science research. Advances in Biotechnology and Microbiology, 7(2), 555709.
 
Lurstwut, B., & Pornpanomchai, C. (2016). Application of image processing and computer vision on rice seed germination analysis. International Journal of Applied Engineering Research, 11(1), 6800-6807.
 
Majumdar, S., & Jayas, D. S. (2000). Classification of cereal grains using machine vision: III. Texture models. Transactions of the ASABE, 43(6), 1681-1687.
 
Majumdar, S., Jayas, D. S., & Bulley, N. R. (1997). Classification of cereal grains using machine vision. ASAE Paper No. 97-3105. St Joseph, Mich., ASAE.
 
Sakai, N., Yonekawa, S., & Matsuzaki, A. (1996). Two-dimensional image analysis of the shape of rice and its application to separating varieties. Journal of Food Engineering, 27(4), 397-407.
 
Sapirstein, H. D., Neuman, M., Wright, E. H., Swedyk, E., & Bushuk, W. (1987). An instrumental system for cereal grain classification using digital image analysis. Journal of Cereal Science, 6(1), 3-14.
 
Shaker, M., Bazrafshan, M., & Jafari, A. (2020). Determining the number of sugar beet seedling using image processing method. Sugarbeet Journal, 36(1), 71-79. (in Persian)
 
Shaker, M., Minaei, S., Khushtaqaza, M. H., Banakar, A., & Jafari, A. (2015). Using machine vision to improve performance and reduce waste in paddy peeling machine. Agricultural Mechanization and Systems Engineering Research Journal, 16(65), 47-64. (in Persian)
 
Tanabata, T., Shibaya, T., Hori, K., Ebana, K., & Yano, M. (2012). Smart Grain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiology, 160(4), 1871-1880.
 
Tanska, M., Rotkiewicz, D., Kozirok, W., & Konopka, I. (2005). Measurement of the geometrical features and surface colour of rapeseeds using digital image analysis. Food Research International, 38(7), 741-750.
 
Venora, G., Grillo, O., Ravalli, C., & Cremonini, R. (2009). Identification of Italian landraces of bean (Phaseolus vulgaris L.) using an image analysis system. Scientia Horticulturae, 121(4), 410-418.
 
Wan, Y. N., Lin, C. M., & Chiou, J. F. (2002). Rice quality classification using an automatic grain quality inspection system. Transactions of the ASAE, 45(2), 379-387.
 
Yan, X., Wang, J., Liu, S., & Zhang, C. (2010). Purity identification of maize seed based on color characteristics. Proceedings of the 4th Conference on Computer and Computing Technologies in Agriculture (CCTA).  Oct. 22-25, Nanchang, China.
 
Zayas, I., Converse, H., & Steele, J. (1990). Discrimination of whole from broken corn kernels with image analysis. Transactions of the ASAE, 33(5), 1642–1646.