نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 کارشناس گروه تکنولوژی مبارزه، دفتر آفت کش ها، سازمان حفظ نباتات، تهران، ایران

چکیده

روش واحدی برای ارزیابی فناوری­های مختلف سمپاشی وجود ندارد. روش­های موجود مزایا و محدودیت­هایی دارند که باید بررسی شوند. هدف از این پژوهش معرفی روش آزمونی برای ارزیابی سمپاش­های ULV قابل نصب روی وانت است، سمپاش­هایی که اغلب برای مبارزه با آفات مهاجم به ویژه ملخ صحرایی به ­کار می­روند. در این تحقیق از راهنمای حداقل­های FAO کمک گرفته شد تا روش آزمونی برای بررسی عملکرد سمپاش­های ULV ارائه شود. اندازه قطره­ها، توزیع عرضی و ارتفاع پاشش سه مدل سمپاش با نام­های ULV3، ULV3 Plus و ULV5 که عمده تفاوت این سمپاش­ها بهره­گیری از اتمایزرهایی با تکنولوژی­های متفاوت است، ارزیابی و الگوهای پاشش رسم شد. بررسی ظرفیت پمپ سمپاش­ها نشان داد که بیشینۀ فشار کاری پمپ 5 بار  و بیشینۀ دبی آن 83/1 لیتر بر دقیقه در فشار 5/0 بار است. ارزیابی­ها نشان داد که دبی خروجی از اتمایزرها، صرف­نظر از حجم سم داخل مخزن، یکنواخت است. قطر میانۀ عددی و حجمی برای تمامی سمپاش­ها به کمک کاغذهای حساس به آب سنجیده و به ترتیب کوچک­تر از 30 و 60 میکرومتر گزارش شد. سمپاش مدل ULV3 Plus که اتمایزر آن از ترکیب توان الکتریکی و بادی  بهره می­برد، بهترین عملکرد را با تولید قطره­هایی با قطر میانۀ عددی 28 و قطر میانۀ حجمی 51  میکرومتر داشت. بیشینه عرض پاشش نیز در ارزیابی سمپاشULV3 Plus  با عرض پاشش 15 متر به دست آمد. به ­دلیل محدودیت­های استفاده از کاغذ­های حساس به آب، پیشنهاد می­شود فناوری­های جدید، مانند استفاده از پراکنش نور لیزر یا دوربین­های پر سرعت، جایگزین کاغذهای حساس به آب شوند.

کلیدواژه‌ها

Anon. (2001). Guidelines on minimum requirement for agricultural pesticide application equipment. Vol. 2. Vehicle-mounted and trailed sprayers, Food and Agriculture Organization of the United Nations, Rome.
 
Anon. (2006a). Equipment for vector control: specification guidelines. Geneva, Switzerland: World Health Organization.
 
Anon. (2006b). Pesticides and their application. Geneva, Switzerland: World Health Organization.
 
Anon. 2013. World population prospects: The 2010 revision and world urbanization prospects: The 2011 revision. United Nations. Available at: http://esa.un.org.
 
Beyaz, A., Dagtekin, M., Cilingir, I., & Gerdan, D. (2017). Evaluation of droplet size spectra for agricultural pesticide applications using water sensitive paper and image analysis techniques. Fresenius Environmental Bulletin, 27, 7717-7723.
 
Cawood, P. N., Robinson, T. H., & Whittaker, S. (1995). An investigation of alternative application techniques for the control of black-grass. Proceeding of the Brighton Crop Protection Conference - Weeds. Nov. 20-23. Brighton, United Kingdom.
 
Ciba-Geigy Limited. (1985). Water-sensitive paper for monitoring spray distribution. Ciba-Geigy Application Services, Publ. No. AG 8.11/19374 XYe. Basle, Switzerland.
 
Cunha J. P., Reis, E. F., de Assunção, H. H. T., & Landim, T. N. (2019). Evaluation of droplet spectra of the spray tip AD 11002 using different techniques. Engenharia Agrícola, Jaboticabal, 39(4), 476-481.
 
Cunha, M., Carvalho, C., & Marcal, A. R. S. (2012). Assessing the ability of image processing software to analyze spray quality on water-sensitive papers used as artificial targets. Biosystems Engineering, 111(1), 11-23.
 
Fox, R. D., Salyani, M., Cooper, J. A., & Brazee, R. D. (2001). Spot size comparisons on oil/water sensitive paper. Applied Engineering in Agriculture, 17(2), 131-136.
 
Fox, R., Derksen, R., Cooper, J., Krause, C., & Ozkan, H. (2003). Visual and image system measurement of spray deposits using water sensitive paper. Applied Engineering in Agriculture, 19(5), 549-552.
 
Gil, E., Escola, A., Rosell, J.R., Planas, S., & Val, L. (2007). Variable rate application of plant protection products in vineyards using ultrasonic sensors. Crop Protection, 26, 1287-1297.
 
Haman, D. Z., & Zazueta, F. S. (2011). Measuring Pump Capacity for Irrigation System Design. IFAS Extension. University of Florida. Available at: http://edis.ifas.ufl.edu.
 
Hoffmann, W. C., & Hewitt, A. J. (2005). Comparison of three imaging systems for water-sensitive papers. Applied Engineering in Agriculture, 21(6), 961-964.
 
Hoffmann, W. C., Walker, T. W., Fritz B. K., Farooq, M., Smith, V. L., Robinson, C. A., & Lan, Y. (2012). Further evaluation of spray characterization of sprayers typically used in vector control. Journal of the American Mosquito Control Association, 28(2), 93-101.
 
Hoffmann, W. C., Walker, T. W., Fritz, B. K., Gwinn, T., Smith, V. L., Szumlas, D., Quinn, B., Lan, Y., Huang, Y., & Sykes, D. (2008). Spray Characterization of Thermal Fogging Equipment Typically Used in Vector Control. Journal of the American Mosquito Control Association24(4), 550-559.
 
Longo, D., Manetto, G., Papa, R., & Cerruto, E. (2020). Design and construction of a low-cost test bench for testing agricultural spray nozzles. Applied Sciences, 10, 5221.
 
Maghsoudi, H. (2013). Variable treatment garden sprayer with mechatronic target detection system by ultrasonic sensors (Ph. D Thesis), Faculty of Agriculture. Tarbiat Modares University, Tehran, Iran. (in Persian)
 
Martini, X., Kincy, N., & Nansen, C. (2012). Quantitative impact assessment of spray coverage and pest behavior on contact pesticide performance. Pest Management Science, 68(11), 1471-1477.
 
Matthews, G. A., Bateman, R., & Miller, P. (2014). Pesticide application methods. Wiley Blackwell.
 
Nuyttens, D., De Schampheleire, M., Baetens, K., Brusselman, E., Dekeyser, D., & Verboven, P. (2011). Drift from field crop sprayers using an integrated approach: Results from a five-year study. Transactions of the ASABE, 54(2), 403-408.
 
Panneton, B. (2002). Image analysis of water-sensitive cards for spray coverage experiments. Applied Engineering in Agriculture, 18(2), 179-182.
 
Renton, M., Busi, R., Neve, P., Thornby, D., & Vila-Aiub, M. (2014). Herbicide resistance modelling: past, present and future. Pest Management Science, 70(9), 1394-1404.
 
Rhodes, M. J. (2008). Introduction to particle technology. New Jersey, USA. John Wiley and Sons Inc.
 
Rostami, M. A., & BehAyeen, M. A. (2021). Guideline to identification, calibration, and adjustment of sprayers. Tehran: Publication of Agricultural Education. (in Persian)
 
Salyani, M., Zhu, H., Sweeb, R. D., & Pai, N. (2013). Assessment of spray distribution with water-sensitive paper. Agricultural Engineering International: CIGR Journal, 15(2), 101-111.
 
Sanchez-Hermosilla, J., & Medina, R. (2004). Adaptive threshold for droplet spot analysis using water-sensitive paper. Applied Engineering in Agriculture, 20, 547-551.
 
Schick, J. R. (1997). An engineer's practical guide to drop size. Spraying Systems Co.
 
Sies, M. F., Madzlan, N. F., Asmuin, N., Sadikin, A., & Zakaria, H. (2017). Determine spray droplets on water sensitive paper (WSP) for low pressure deflector nozzle using image J. IOP Conference Series: Materials Science and Engineering, 243, 012047.
 
Symmons, P. M., Boase, C. J., Clayton, J. S., & Gorta, M. (1989). Controlling desert locust nymphs with bendiocarb applied by a vehicle-mounted spinning disc sprayer. Crop Protection, 8, 324-331.
 
Vulgarakis Minov, S. (2015). Integration of imaging techniques for the quantitative characterization of pesticide sprays (Ph. D. Thesis), Faculty of Bioscience Engineering. Ghent University. Belgium.
 
Wang, L., Yue, X., Liu, Y., Wang, J., & Wang, H. (2019). An intelligent vision based sensing approach for spraying droplets deposition detection. Sensors, 19, 933.
 
Zhu, H., Salyani, M., & Fox, R. D. (2011). A portable scanning system for evaluation of spray deposit distribution. Computers and Electronics in Agriculture, 76, 38-43.