نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، پردیس ابوریحان، دانشگاه تهران، تهران، ایران

2 استاد گروه مهندسی فنی کشاورزی؛ پردیس ابوریحان دانشگاه تهران، تهران، ایران

3 استادیار گروه مهندسی فناوری صنایع غذایی پردیس ابوریحان دانشگاه تهران، تهران، ایران

4 استاد گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

ضایعات نان از ضایعات مواد غذایی رایج در جهان است. هدف از این تحقیق، بررسی اثر متغیرهای زمان قندسازی و نسبت ضایعات نان به آب (غلظت سوبسترا) بر میزان گلوگز ضایعات نان و تولید اتانول­زیستی از گلوگز حاصل از هیدرولیزشدن آن است. ضایعات نان ابتدا به قطعات کوچک تقسیم و پس از آن با نسبت 15-10 (w/v%) با آّب مخلوط­ شدند. از آنزیم­های آلفاآمیلاز برای مایع­سازی و گلوکوآمیلاز برای قندسازی استفاده شد. برای بررسی اثر متغیرهای زمان قندسازی و غلظت سوبسترا بر مقدار گلوگز، از روش سطح پاسخ (طرح مرکب مرکزی) با نرم‌افزار دیزاین­اکسپرت استفاده گردید. قند حاصل از هیدرولیز به روش کیت گلوکز اندازه­گیری شد. میزان آفلاتوکسین ضایعات نان (به عنوان شاهد) و نمونۀ بهینۀ حاصل از فرآیند هیدرولیز (نمونه با بیشترین میزان گلوگز) اندازه­گیری شد. از مخمر ساکارومایسیس سرویزیه برای فرآیند تخمیر استفاده شد. نتایج تحقیق نشان داد که بیشترین غلظت گلوگز در هیدرولیز، مربوط به غلظت سوبسترای 150 گرم بر لیتر و زمان قندسازی 48 ساعت به میزان 21/100 گرم بر لیتر است. هیدرولیز در غلظت­های بیشتر و زمان­های طولانی­تر، به علت ایجاد ویسکوزیته و چسبندگی بالا، میزان غلظت گلوکز را کاهش می­دهد در نتیجه اثر مطلوبی روی هیدرولیز ندارد.معلوم شد فرآیند هیدرولیزشدن آفلاتوکسین B1 و B2 را به ترتیب به میزان 76 درصد و 16 درصد کاهش می­دهد. بیشترین مقدار اتانول­زیستی در فاز تخمیر، 35/45 گرم بر لیتر با بازده 7/88 درصد در زمان 36 ساعت به­ دست آمد که می­تواند به دلیل مصرف گلوکز تولید شده در مرحلۀ هیدرولیز شدن به واسطۀ رشد مناسب تودۀ سلولی در تخمیر در این مدت زمان باشد؛ زمان مناسب برای فرآیند تخمیر 36 ساعت است.

کلیدواژه‌ها

Abedi, M. (2012). Bioethanol production from potato waste (M. Sc. Thesis), University of Tehran. Tehran. Iran. (in Persian)
 
Acanski, M., Pastor, K., Razmovski, R., Vucurovic, V., & Psodorov, D. (2014). Bioethanol production from waste bread samples made from mixtures of wheat and buckwheat flours. Journal on Processing and Energy in Agriculture, 18(1), 40-43.
 
Anon. (2011). Food and feed stuffs - determination of aflatoxins B&G by HPLC method using immunoaffinity column clean up-Test method. ISIRI, 6872. Institute of Standards and Industrial Research of Iran, Tehran, Iran (in Persian)
 
Anon. (2017). Glucose Assay Kit. Ziestchem Diagnostics, Tehran, Iran. (in Persian)
 
Caputi, A., Ueda, M., & Brown, Th. (1968). Spectrophotometric determination of ethanol in wine. American Journal of Enology and Viticulture, 19(3), 160-165.
 
Duku, M. H., Gu, S., & Hagan, E. B. (2011). A comprehensive review of biomass resources and biofuels potential in Ghana. Renewable and Sustainable Energy Reviews, 15(1), 404-415.
 
Ebrahimi, F., Khanahmadi, M., Roodpeyma, Sh., & Taherzadeh, M. (2008). Ethanol production from bread residues. Biomass and Bioenergy, 32(4), 333-337.
 
Han, W., Hu, Y., Li, Sh., Huang, J., Nie, Q., Zhao, H., & Tang, J. (2017). Simultaneous dark fermentative hydrogen and ethanol production from waste bread in a mixed packed tank reactor. Journal of Cleaner Production, 141, 608-611.
 
Hashem, M., Asseri, T. Y. A., Alamri, S. A., & Alrumman, S. A. (2018). Feasibility and sustainability of bioethanol production from starchy restaurants bio-wastes by new yeast strains. Waste and Biomass Valorization, 10(6), 1617-1626.
 
Hudečková, H., Šupinová, P., & Babák, L. (2017). Optimization of enzymatic hydrolysis of waste bread before fermentation. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65(1), 35-40.
 
Ismail, A., Riaz, M., Akhtar, S., Yoo, S. H., Park, S., Abid, M., & Ahmad, Z. (2017). Seasonal variation of aflatoxin B1 content in dairy feed. Journal of Animal and Feed Sciences, 26(1), 33–37.
 
Izad-Panah, N., Mohammadi, V., & Aghayar-Makui, N. (2018). A review of bread wastes (The need to reduce bread wastes to increase productivity). Applied Studies in Management and Development Sciences, 11(2), 47-58. (in Persian)
 
Kawa-Rygielska, J., Pietrzak, W., & Czubaszek. A. (2012). Characterization of fermentation of waste wheat-rye bread mashes with the addition of complex enzymatic preparations. Biomass and Bioenergy, 44, 17-22.
 
Kim, Y. S., Jang, J. Y.,  Park, S. J., & Um. B. H. (2018). Dilute sulfuric acid fractionation of Korean food waste for ethanol and lactic acid production by yeast. Waste Management, 74, 231-240.
 
Kitagaki, H., Araki, Y., Funato, K., & Shimoi, H. (2007). Ethanol‐induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Letters. 581(16), 2935-2942.
 
Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449-467.
 
Moraise, R. R., Pascoal, A. M., Pereira-Júnior, M. A., Batista, K. A., Rodriguez, A. G., & Fernandes, K. F. (2019). Bioethanol production from Solanum lycocarpum starch: A sustainable non-food energy source for biofuels. Renewable Energy, 140, 361-366.
 
Pietrzak, W., & kawa-Riejilska, J. (2014). Ethanol fermentation of waste bread using granular starch hydrolyzing enzyme: Effect of raw material pretreatment. Fuel, 134(15), 250-256.
 
Pietrzak, W., & kawa-Riejilska, J. (2015). Simultaneous scarification and ethanol fermentation of waste wheat–rye bread at very high solids loading: Effect of enzymatic liquefaction conditions. Fuel, 147(1), 236-242.
 
Shahnoushi, N., Firoozzare, A., Jalerajabi, M., Daneshvar, M., & Dehghanian, S. (2011). The use of the order logit model in an investigation of the effective factors on bread waste. Journal of Economic Research, 46(3), 111-132. (in Persian)
 
Sugiura, K., Yamatani, S., Watahara, M., & Onodera, T. (2009). Ecofeed, animal feed produced from recycled food waste. Veterinaria Italiana, 45(3), 397-404.
 
Svanes, E., Oestergaard, S., & Hanssen, O. J. (2019). Effects of packaging and food waste prevention by consumers on the environmental impact of production and consumption of bread in Norway. Sustainability, 11(1), 43. doi:10.3390/su11010043.
 
Rushing, B. R., & Selim, M. I. (2019). Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food and Chemical Toxicology, 124, 81-100.
 
Udomkun, P., Wiredu, A. N., Nagle, M., Müller, J., Vanlauwe, B., & Bandyopadhyay, R. (2017).
Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application -A review. Food Control, 76, 127-138.
 
Vanhoutte, L., Audenaert, K., & De Gelder, L. (2016). Biodegradation of mycotoxins: Tales from known and unexplored worlds. Frontiers in Microbiology, 7, 561. doi: 10.3389/fmicb.2016.00561.
 
Van Maris, A. J. A., Abbott, D. A., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M. A., Wisselink, H. W., Scheffers, W. A., van Dijken, J. P., & Pronk, J. T. (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek, 90(4), 391-418.