نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دوره دکترای تخصصی، گروه مهندسی بیوسیستم، دانشکده علوم کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

2 دانشیار گروه مهندسی بیوسیستم، دانشکده علوم کشاورزی و منابع طبیعی،دانشگاه محقق اردبیلی.

3 استاد گروه مهندسی بیوسیستم، دانشکده علوم کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

چکیده

دستیابی به دانش پایه بینایی ماشین در کنترل کیفی بذر گندم اهمیت ویژه‌ای دارد. در این پروژه، با تهیه سخت ­افزار و نرم ­افزار مناسب، تصویر 21000 عدد نمونه دانه، تهیه و با الگوریتم طراحی شده پردازش شد. نود و یک ویژگی شکل، بافت و رنگ محاسبه و رتبه­ بندی شد. از میان پنج مدل طبقه ­بندی­ کننده، بیشترین صحت کل، طبقه‌بندی در مدل شبکه عصبی مصنوعی با دو لایه پنهان و به­ کار‌گیری ۳۵ ویژگی برتر اول به ­دست آمد. در آزمون این مدل با استفاده از داده‌های مستقل، صحت طبقه‌بندی برای گندم سفید درشت، گندم سفید کوچک، گندم سفید شکسته، گندم سفید چروکیده، گندم قرمز، جو و چاودار به ­ترتیب 100، 7/96، 3/99، 3/90، 99، 7/99، 98 درصد و میانگین آنها 6/97 درصد محاسبه شده است. صحت کل طبقه‌بندی در مدل‌های تحلیل تفکیک خطی، تحلیل تفکیک درجه دوم، K- نزدیک­ترین همسایگی و شبکه عصبی مصنوعی با یک لایه پنهان به ­ترتیب 95، 7/96، 6/91 و 3/97 درصد به ­دست آمده است. در شرایط این تحقیق، سیستم بینایی ماشین شامل دوربین دیجیتال صنعتی و طبقه­ بندی کننده مدل شبکه عصبی مصنوعی دو لایه، با صحت خوبی قابل استفاده در بررسی کیفیت ظاهری بذر گندم تشخیص داده شده است.

کلیدواژه‌ها

 Azizi, A., Abbaspour-Gilandeh, Y., Nooshyar, M., & Afkari-Sayah, A. (2015). Identifying potato varieties using machine vision and artificial neural networks. International Journal of Food Properties, 19, 618-635. doi:10.1080/10942912.2015.1038834.
 
Chelladurai, V., Kaliramesh, S., Technology, P., & Jayas, D. S. (2012). Detection of callosobruchus maculatus (F.) infestation in mung bean (Vigna Radiata) using thermal imaging technique. NABEC-CSBE/SCGAB 2012 Joint Meeting and Technical Conference. July 15-18. Lakehead University, Orillia, Ontario.
 
Chen, X., Xun, Y., Li, W., & Zhang, J. (2010). Combining discriminant analysis and neural networks for corn variety identification. Computers and Electronics in Agriculture, 71, 48-53. doi:10.1016/j.compag.2009.09.003.
 
Delwiche, S. R., Yang, I. C., & Graybosch, R. A. (2013). Multiple view image analysis of free falling U. S. wheat grains for damage assessment. Computers and Electronics in Agriculture, 98, 62-73. doi:10.1016/j.compag.2013.07.002.
 
Dubey, B. P. P., Bhagwat, S. G. G., Shouche, S. P. P., & Sainis, J. K. K. (2006). Potential of artificial neural networks in varietal identification using morphometry of wheat grains. Biosystems Engineering, 95, 61-67. doi:10.1016/j.biosystemseng.2006.06.001.
 
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179-188.
 
Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2009). Digital Image Processing using MATLAB. 3rd Ed. Gatesmark Publishing.
 
Guevara-Hernandez, F., & Gomez-Gil, J. (2011). A machine vision system for classification
of wheat and barley grain kernels. Spanish Journal of Agricultural Research (SJAR), 9, 672-680.  doi:10.5424/sjar/20110903-140-10.
 
Guo, Y., Hastie, T., & Tibshirani, R. (2007). Regularized linear discriminant analysis and its application in microarrays. Biostatistics, 8, 86-100. doi:10.1093/biostatistics/kxj035.
 
Khazaei, J., Goplour, I., & Ahmadi-Moghaddam, P. (2016). Evaluation of statistical and neural network architectures for the classification of paddy kernels using morphological features. International Journal of Food Properties, 19, 1227-1241. doi:10.1080/10942912.2015.1071839.
 
Mahesh, S., Manickavasagan, A., Jayas, D. S., Paliwal, J., & White,  N. D. G. (2008). Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosystems Engineering,101, 50-57. doi:10.1016/j.biosystemseng.2008.05.017.
 
Majumdar, S., & Jayas, D. S. (2000a). Classification of cereal grains using machine vision: Iv. combined morphology, color, and texture models. Transactions of the ASAE, 43, 1689-1694. doi:10.13031/2013.3069.
 
Majumdar, S., & Jayas, D. S. (2000b). Classification of cereal grains using machine vision: I. Mrphology Models. Transactions of the ASAE, 43, 1669-1675.
 
Majumdar, S., & Jayas, D. S. (2000c). Classification of cereal grains using machine vision: III. Texture models. Transactions of the ASAE, 43, 1681-1687.
 
Paliwal, J., Visen, N. S., Jayas, D. S., & White, N. D. G. (2003). Comparison of a neural network and a non-parametric classifier for grain kernel identification. Biosystems Engineering, 85, 405-413. doi:10.1016/S1537-5110(03)00083-7.
 
Pazoki, A., Pazoki, Z., & Sorkhilalehloo, B. (2013). Rain fed barley seed cultivars identification using neural network and different neurons number. World Applied Sciences Journal. 22, 755-762. doi:10.5829/idosi.wasj.2013.22.05.2036.
 
Pourreza, A., Pourreza, H., Abbaspour-Fard, M. H., & Sadrnia, H. (2012). Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Computers and Electronics in Agriculture, 83, 102-108. doi:10.1016/j.compag.2012.02.005.
 
Reunanen, J. (2003). Overfitting in making comparisons between variable selection methods.
The Journal of Machine Learning Research (JMLR), 3, 1371-1382. doi:10.1162/153244303322753715.
 
Robnik-Šikonja, M., & Kononenko, I. (2003). Theoretical and empirical analysis of reliefF and RReliefF. Machine Learning, 53, 23-69. doi:10.1023/A:1025667309714.
 
Savakar, D. (2012). Recognition and classification of similar looking food grain images using artificial neural networks. International Journal of Applied Mathematics and Computer Science, 13, 61-65.
 
Shahin, M. A., & Symons, S. J. (2001). A machine vision system for grading lentils. Canadian Biosystems Engineering / Le Genie des biosystems au Canada, 43, 77-714.
 
Silva, F. L., da, Grassi Sella, M. L., Francoy, T. M., & Costa, A. H. R. (2015). Evaluating classification and feature selection techniques for honeybee subspecies identification using wing images. Computers and Electronics in Agriculture, 114, 68-77. doi:10.1016/j.compag.2015.03.012.
 
Szczypiński, P. M. Klepaczko, A., & Zapotoczny, P. (2015). Identifying barley varieties by computer vision. Computers and Electronics in Agriculture, 110, 1-8. doi:10.1016/j.compag.2014.09.016.
 
Vanloot, P., Bertrand, D., Pinatel, C., Artaud, J., & Dupuy, N. (2014). Artificial vision and chemometrics analyses of olive stones for varietal identification of five French cultivars. Computers and Electronics in Agriculture, 102, 98-105. doi:10.1016/j.compag.2014.01.009.
 
Venora, G., Grillo, O., & Saccone, R. (2009). Quality assessment of durum wheat storage centres in Sicily: Evaluation of vitreous, starchy and shrunken kernels using an image analysis system. Journal of Cereal Science, 49, 429-440. doi:10.1016/j.jcs.2008.12.006.
 
Wang, N., Dowell, F. E., & Zhang, N. (2003). Determining wheat vitreousness using image processing and a neural network. Transactions of the ASAE, 46, 1143-1150.
 
Xia, X., Fan, C., Lu, S. J., & Hou, L. L. (2010). The analysis of wheat appearance quality based on digital image processing. 2nd Conference on Environmental Science and Information Application Technology, July 17-18. Wuhan, China.
 
Zapotoczny, P. (2011). Discrimination of wheat grain varieties using image analysis and neural networks. Part I. Single kernel texture. Journal of Cereal Science, 54, 60-68. doi:10.1016/j.jcs.2011.02.012.
 
Zareian, A., Hasani, F., Sadegi, H., & Jazaery, M. R. (2010). Wheat seed certification process and seed production instruction in Iran. 2nd Conference on Seed Science and Technology.
Oct. 26. Azad University. Mashad, Iran. (in Persian)