نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتریT گروه مهندسی بیوسیستم، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

2 دانشیار گروه مهندسی بیوسیستم، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانشیار گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

یکی از راه‌های کاهش تراکم خاک، اضافه کردن کودهای آلی و مدیریت تردد در زمین­های کشاورزی است. در این تحقیق، کود دامی بر مبنای صفر، 45، 60 و 90 تن در هکتار با خاک رسی مخلوط شد. پس از گذشت 6 ماه (شهریور تا اسفندماه)، در چهار سطح تردد 1، 6، 11 و 16 و در سه سطح رطوبت 8، 11 و 14 درصد در سه عمق 10، 20 و 30 سانتی‌متری، تراکم خاک آزمایش شد. آزمایش­ها در انبارۀ خاک دانشگاه ارومیه زیر چرخ 220/65 R 21 تراکتور با استفاده از آزمونگر تک‌چرخ با بار ثابت 4 کیلونیوتن، فشار باد تایر برابر 110 کیلو پاسکال و سرعت پیشروی 88/2 کیلومتر بر ساعت، بررسی شد. در تیمار 90 تن کود دامی بر هکتار، نسبت به تیمار بدون کود، میزان کاهش جرم مخصوص و نشست خاک به ­ترتیب 7/14 و 94/6 درصد اندازه­گیری شد. با افزایش تعداد تردد از 1 به 16 و افزایش رطوبت از 8 به 14 درصد، جرم مخصوص 21/7 و 92/7 درصد افزایش نشان یافته است. برای مدل­سازی، از شبکۀ عصبی پرسپترون چند لایه (MLP-ANN)، با 6 نورون در لایۀ پنهان با تابع انتقال سیگموییدی و تابع انتقال خطی برای نورون خروجی، استفاده شد. مقایسۀ نتایج به ­دست آمده از مدل و نتایج تجربی نشان‌دهندۀ ضریب همبستگی 99/0 بین این مقادیر است. مقدار میانگین مربعات خطای مدل (MSE) و درصد میانگین مطلق خطای سیستم (MAPE) به ­ترتیب 0119071/0 و 0009641/0 به ­دست آمد که نشان از دقت بالای مدل شبکۀ عصبی در تخمین مقادیر تراکم خاک دارد.

کلیدواژه‌ها

Allmaras, R., Fritz, V. A., Pfleger, F. L., & Copeland, S. M. (1998). Common root rot of pea (Pisum sativum L.): oat pre-crop and traffic compaction effects in fine-textured mollisols. In: Box, J. E. (Eds.) Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems. Springer.
 
Anderson, J. A., & Rosenfeld, E. (1993). Neurocomputing. Vol. 2. MIT Press.
 
Anon. (2007). ASTM Standard D698. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, ASTM International, West Conshohocken.
 
Balbuena, R. H., Terminiello, A. M., Claverie, J. A., Casado, J. P., & Marlats, R. (2000). Soil compaction by forestry harvester operation: evolution of physical properties. Revista Brasileira de Engenharia Agricola E Ambiental, 4, 453-459.
 
Beale, M. H., Hagan, M. T., & Demuth, H. B. (2010). Neural Network Toolbox 7. User’s Guide, MathWorks.
 
Benjamin, J. R., & Cornell, C. A. (2014). Probability, statistics, and decision for civil engineers. Courier Dover Publications.
 
Canillas, E. C., & Salokhe, V. M. (2002). Modeling compaction in agricultural soils. Journal of Terramechanics, 39, 71-84.
 
Çarman, K. (2008). Prediction of soil compaction under pneumatic tires a using fuzzy logic approach. Journal of Terramechanics, 45, 103–108.
 
Chelani, A. B., Gajghate, D. G., & Hasan, M. Z. (2002). Prediction of ambient PM and toxic using artifical netural networks. Journal of Air Waste Management Association, 52, 805-810.
 
Davis, T. (2008). Geotechnical testing, observation, and documentation. American Society of Civil Engineers.
 
Demuth, H., & Beale, M. (1993). Neural network toolbox for use with MATLAB. The MathWorks.
 
Ekwue, E. I., & Stone R. J. (1995). Organic matter effects on the strength properties of compacted agricultural soils. Transactions of the ASAE, 38, 357-365.
 
Ferrara, C., Barone, P. M., & Salvati, L. (2015). Toward a socieconomic profile for areas vulnerable to soil compaction? A case study in Mediterranean country. Geoderma, 247-248, 97-107.
 
Günaydın, O. (2009). Estimation of soil compaction parameters by using statistical analyses and artificial neural networks. Environmental Geology, 57(1), 203-215.
 
Haykin, S. (2004). Neural networks, A comprehensive foundation. Amazon.
 
Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems A review of the nature, causes and possible solutions. Soil and Tillage Research, 82, 121-145.
 
Hecht-Nielsen, R. (1987). Kolmogorov’s mapping neural network existence theorem. In Proceedings of the International Conference on Neural Networks, New York: IEEE Press. July 23-26. 3, 11–14.
 
Hewitson, B. C., & Crane, R. G. (1994). Neural nets: Applications in geography. Springer.
 
Johari, A., Javadi, A., & Habibagahi, G. (2011). Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network. Computers and Geotechnics, 38(1), 2-13.
 
Kurjenluoma, J., Alakukku, L., & Ahokas, J. (2009). Rolling resistance and rut formation by implement tires on tilled clay soil. Journal of Terramechanics, 46, 267-275.
 
Lam, D., & Pupp, C. (1993). Expert system and modeling for state of environment reporting. In 2nd International Conference on Integrating GIS and Environmental Modeling. Sep. 26-30. Breckenridge, CO.
 
Mardani, A., Shahidi, K., Rahmani, A., Mashoofi, B., & Karimmaslak, H. (2010). Studies on a long soil bin for soil-tool interaction. Cercetări Agronomice în Moldova, 142, 5-10.
 
Menhaj, M. (2005). Fundamentals of Neural Networks. Third Ed. Amirkabir University Press. (in Persian)
 
Mosaddeghi, M. R., Hajabbasi, M. A., Hemmat, A., & Afyuni, M. (2000). Soil compactibility as affected by soil moisture content and farmyard manure in central Iran. Soil and Tillage, 55, 87-97.
 
McClelland, J. L., & Rumelhart, D. E. (1989). Explorations in parallel distributed processing: A handbook of models, programs, and exercises. MIT press.
 
Navabian, M., Liaghat, A. M., & Homayi, M. (2004). Neural network for fast estimation of saturated hydraulic conductivity. Prediction of Electrical conductivity with neural networks. The Second National Water and Soil Conference. Dec. 10-12. Tehran, Iran. (in Persian)
 
Ohu, J. O., Ekwue, E. I., & Folorunso, O. A. (1994). The effect of addition of organic matter on the compaction of a Vertisol from northern Nigeria. Soil Teach, 7, 155-162.
 
O,Sullivan, M. F. (1992). Uniaxial compaction effects on soil physical properties in relation to soil type and cultivation. Soil & Tillage Research, 24, 257-269.
 
Patel, S., & Mani, I. (2011). Effect of multiple passes of tractor with varying normal load on subsoil compaction. Journal of Terramechanics, 48, 277-284.
 
Raghavan, G. S. V., Mckeys E., & Chasse. M. (1977). Effect of wheel slip on soil compaction. Journal of AgriulturalEngineering Research, 22, 79-83.
 
Raper, R. L. (2005). Agricultural traffic impacts on soil. Journal of Terramechanics, 42(3-4): 259-280.
 
Shahgholi, G., & Abuali, M. (2015). Measuring soil compaction and soil behavior under the tractor tire using strain transducer. Journal of Terramechanics, 59, 19-25.
 
Stone R. J., & Ekwue E. I. (1993). Maximum bulk density achieved during soil compaction as affected by the incorporation of three organic materials. American Society of Agricultural Engineers, 36, 1713-1719.
 
Söane, B., & Van Ouwerkerk, C. (1994). Soil compaction problems in world agriculture. Soil Compaction in Crop Production 11, 1-2.
 
Söane, B. D. (1990). The role of organic matter in soil compactibility. A review of some practical aspects. Soil and Tillage Research, 16, 179-201.
 
Tenpe, A., & Suneet, K. (2013). Neural network modeling of predicting compaction parameters based on index properties of soil. International Journal of Science and Research, 4(7), 1198-1202.