نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترای مهندسی مکانیک بیوسیستم، دانشگاه بوعلی سینا، همدان و مدیر هنرستان زنده یاد ادهم مظفری،کامیاران، ایران

2 استاد مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

3 استاد مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بوعلی سینا، همدان، ایران

10.22092/amsr.2025.367934.1508

چکیده

طراحی و توسعة ماشین­های کشاورزی به طور مستقیم با خواص بیولوژیکی محصولات کشاورزی در ارتباط است. مهندسان و طراحان اگر به ویژگی­های دینامیکی آگاهی نداشته باشند باید با روش­های تجربی به طراحی ماشین­های کشاورزی و تجهیزات بپردازند که این امر از لحاظ زمان و هزینه ناکارآمد است. هدف از این مطالعه شناسایی فرکانس­های طبیعی در دو گروه کوچک و بزرگ میوة پرتقال رقم تامسون با استفاده از آنالیز مودال اجزای محدود و تابع پاسخ هارمونیک با نرم­افزار انسیس است. برای به ‌دست آوردن داده‌های مورد نیاز در شبیه‌سازی، آزمون ضربه با دستگاه پاندول اجرا شد. مدل هندسی سه­بعدی میوة پرتقال در نرم­افزار انسیس (Ansys) ترسیم شد و به طور جداگانه ویژگی­های فیزیکی و مکانیکی پوست و گوشت میوة پرتقال تعیین گردید. به منظور اعتبار­سنجی فرکانس­های طبیعی به ­دست آمده از آنالیز مودال با استفاده از آنالیز پاسخ هارمونیکی و داده­های شتاب­سنج سه محوره با تعیین کردن محدودة فرکانسی و نیز وارد کردن مقادیر داده­های شتاب­سنج در نرم­افزار انسیس، نمودار فرکانس طبیعی بر حسب شتاب رسم گردید. اختلاف بین فرکانس­های تجربی و آنالیز مودال برای هر دو گروه از قابلیت اعتماد بالایی برخوردار است به طوری‌که ضریب تعیین (R2) ناشی از مقایسة فرکانس­های تجربی و آنالیز مودال برای پرتقال­های گروه بزرگ و کوچک به ترتیب 9559/0 و 9682/0 است. بنابراین، مدل اجزای محدود و روش تجربی مورد استفاده در این مطالعه می­تواند به عنوان روشی با صرفه و قابل اعتماد به منظور طراحی ماشین­های برداشت میوة پرتقال و بهینه­سازی مکانیزم­های پس از برداشت و حمل و نقل استفاده شود.

کلیدواژه‌ها

 
Ahmadi, E., & Barikloo, H. )2016a). Viscoelastic finite element analysis of the dynamic behavior of apple under impact loading with regard to its different layers. Computers & Electronics in Agriculture, 121, 1-11. https://doi.org/10.1016/j.compag.2015.11.017.
Ahmadi, E., & Barikloo, H. )2016b(. Mechanical property evaluation of apricot fruits under quasi-static & dynamic loading. Journal of Agricultural Machinery, 6(1), 139-152. https://doi.org/10.22067/jam.v6i1.29489.
Albaar, N., Budiastra, I. W., & Hariyadi, Y. (2016). Influence of secondary packaging on quality of carrots during transportation. Agriculture and Agricultural Science Procedia, 9, 348-352.

Aliasgarian, S., Ghassemzadeh, H. R., Moghaddam, M., & Ghaffari, H. (2015). Mechanical damage of strawberry during harvest & postharvest operations. Acta Technologica Agriculturae, 18, 1-5. https://doi.org/10.1515/ata-2015-0001.

Anon. (2015). Agriculture database of FAO-STAT. Available at http://FAOSTAT.FAO.ORG.
Baharin, N. H., & Rahman, R. A. (2009). Effect of accelerometer mass on thin plate vibration. Jurnal Mekanikal. 29, 100-111. https://www.researchgate.net/publication/44707632.
Celik, H. K., Rennie, A. E. W., & Akinci, I. )2011(. Deformation behaviour simulation of an apple under drop case by finite element method. Journal of Food Engineering, 104, 293-298. https://doi.org/10.1016/j.jfoodeng.2010.12.020.
Chiputula, J. (2009). Evaluating mechanical damage of fresh potato during harvesting & postharvest handling. (M.  Sc. Thesis), University of Florida.
Gao, Y., Song, C., & Rao, X. (2018). Image processing-aided fea for monitoring dynamic response of potato tubers to impact loading. Computers & Electronics in Agriculture, 151, 21-30. https://doi.org/10.1016/j.compag.2018.05.027.
Gyasi, S., Fridley, R. B., & Chen, P. (1981). Elastic & viscoelastic Poisson's ratio determination for selected citrus fruits. Transactions of the ASAE, 24(3), 747-0750. https://doi.org/10.13031/2013.34332.
Jung, H. M., & Park, J. G. (2012). Effects of Vibration stress on the quality of packaged apples during simulated   transport. Journal of Biosystems Engineering, 37, 44-50. https://doi.org/10.1016/j.postharvbio.2022.111918.
Malalasekera, W., & Versteeg, H. K. (2007). An introduction to computational fluid dynamics. 2nd Ed. The finite volume method, Harlow: Prentice Hall.
Mohsenin, N. N. (1978). Physical properties of food and agricultural materials. 2nd Revised and Update Edition. Gordon and Breach Science Pub. New York.
Namdari Gharaghani, B., Maghsoudi, H., & Mohammadi, M. (2020). Ripeness detection of orange fruit using experimental & finite element modal analysis. Scientia Horticulturae, 261, 1-8. https://doi.org/10.1016/j.scienta.2019.108958.
Santos, F. L., Scinocca, F., & Marques, D. S. )2021(. Modal properties of macaw palm fruit-rachilla system: An approach by the stochastic finite element method (SFEM). Computers & Electronics in Agriculture. 184, 1-9. https://doi.org/10.1016/j.compag.2021.106099.
Soleimani, B., & Ahmadi, E. (2014). Measurement & analysis of truck vibration levels as a function of packages locations in truck bed & suspension. Computers & Electronics in Agriculture, 109, 141-147. https://doi.org/10.1016/j.compag.2014.09.009.
 Song, H. Z., Wang, J., & Li, Y. H. )2006(. Studies on vibration characteristics of a pear using finite element method. Journal of Zhejiang University Science, 7, 491-496. https://doi.org/10.1631/jzus.2006.b0491.
Velloso, N. S., Magalhães, R. R., Santos, F. L., & Santos, A. A. R. )2020(. Modal properties of coffee plants via numerical simulation. Computers & Electronics in Agriculture, 175, 1-13. https://doi.org/10.1016/j.compag.2020.105552.
    تحلیل نرم­افزاری پاسخ هارمونیک میوة پرتقال به منظور ...                                                                                                            کهریزی و همکاران
 
Wang, F., Ma, S., Wei, W., Zhang, Y., & Zhang. Z. )2017(. Frequency sweep test & modal analysis of watermelon during transportation. International Journal of Food Engineering, 13(5). https://doi.org/10.1515/ijfe-2016-0362.
Yousefi, S., Farsi, H., & Kheiralipour, K. )2016(. Drop test of pear fruit: Experimental measurement & finite element modelling. Biosystems Engineering, 147, 17-25. https://doi.org/10.1016/j.biosystemseng.2016.03.004.
Zhang, H., Wu, J., Zhao, Z., & Wang, Z. )2018(. Nondestructive firmness measurement of differently shaped pears with a dual-frequency index based on acoustic vibration. Postharvest Biology & Technology, 138, 11-18. https://doi.org/10.1016/j.postharvbio.2017.12.002.