Ahmad, R., Bhat, K. S., Ahn, M. S., & Hahn, Y. B. (2017). Fabrication of a robust and highly sensitive nitrate biosensor based on directly grown zinc oxide nanorods on a silver electrode.
New Journal of Chemistry,
41, 10992-10997.
https://doi.org/10.1039/C7NJ02526B.
Al Mamun, M., Wahab, Y. A., Hossain, M. M., Hashem, A., & Johan, M. R. (2021). Electrochemical biosensors with aptamer recognition layer for the diagnosis of pathogenic bacteria: Barriers to commercialization and remediation.
TrAC Trends in Analytical Chemistry,
145, 116458.
https://doi.org/10.1016/j.trac.2021.116458.
Asefpour Vakilian, K. (2020a). Determination of nitrogen deficiency-related microRNAs in plants using fluorescence quenching of graphene oxide nanosheets.
Molecular and Cellular Probes,
52, 101576.
https://doi.org/10.1016/j.mcp.2020.101576.
Asefpour Vakilian, K. (2022).
A nitrate enzymatic biosensor based on optimized machine learning techniques. Proceedings of the 9th Iranian Joint Congress on Fuzzy and Intelligent Systems. Apr. 2-4, Bam, Iran.
https://doi.org/10.1109/CFIS54774.2022.9756481. (in Persian)
Asefpour Vakilian, K., & Massah, J. (2018b). A fuzzy-based decision making software for enzymatic electrochemical nitrate biosensors.
Chemometrics and Intelligent Laboratory Systems,
177, 55-63.
https://doi.org/10.1016/j.chemolab.2018.04.016.
Bendikov, T. A., Kim, J., & Harmon, T. C. (2005). Development and environmental application of a nitrate selective microsensor based on doped polypyrrole films.
Sensors and Actuators B: Chemical,
106, 512-517.
https://doi.org/10.1016/j.snb.2004.07.018.
Bhaiyya, M., Panigrahi, D., Rewatkar, P., & Haick, H. (2024). Role of machine learning assisted biosensors in point-of-care-testing for clinical decisions.
ACS Sensors,
9, 4495-4519.
https://doi.org/10.1021/acssensors.4c01582.
Bui, M. P. N., Brockgreitens, J., Ahmed, S. & Abbas, A. (2016). Dual detection of nitrate and mercury in water using disposable electrochemical sensors.
Biosensors and Bioelectronics,
85, 280-286.
https://doi.org/10.1016/j.bios.2016.05.017.
Can, F., Ozoner, S. K., Ergenekon, P., & Erhan, E. (2012). Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode.
Materials Science and Engineering: C,
32, 18-23.
https://doi.org/10.1016/j.msec.2011.09.004.
Cataldo, D. A., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid.
Communications in Soil Science and Plant Analysis,
6, 71-80.
https://doi.org/10.1080/00103627509366547.
Chaudhary, V., Rustagi, S., & Kaushik, A. (2023). Bio-derived smart nanostructures for efficient biosensors.
Current Opinion in Green and Sustainable Chemistry,
42, 100817.
https://doi.org/10.1016/j.cogsc.2023.100817.
Chou, S. S., Chung, J. C., & Hwang, D. F. (2003). A high performance liquid chromatography method for determining nitrate and nitrite levels in vegetables.
Journal of Food and Drug Analysis,
11, 11.
https://doi.org/10.38212/2224-6614.2702.
Cui, F., Yue, Y., Zhang, Y., Zhang, Z., & Zhou, H. S. (2020). Advancing biosensors with machine learning.
ACS Sensors,
5, 3346-3364.
https://doi.org/10.1021/acssensors.0c01424.
Gao, L., Barber‐Singh, J., Kottegoda, S., Wirtshafter, D., & Shippy, S. A. (2004). Determination of nitrate and nitrite in rat brain perfusates by capillary electrophoresis.
Electrophoresis,
25, 1264-1269.
https://doi.org/10.1002/elps.200305840.
Gomes, G. F., De Almeida, F. A., Junqueira, D. M., da Cunha Jr, S. S., & Ancelotti Jr, A. C. (2019). Optimized damage identification in CFRP plates by reduced mode shapes and GA-ANN methods.
Engineering Structures,
181, 111-123.
https://doi.org/10.1016/j.engstruct.2018.11.081.
Hashemi Shabankareh, S., Asghari, A., Azadbakht, M., & Asefpour Vakilian, K. (2023). Physical and physiological characteristics, as well as miRNA concentrations, are affected by the storage time of tomatoes.
Food Chemistry,
429, 136792.
https://doi.org/10.1016/j.foodchem.2023.136792.
Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications.
Future Generation Computer Systems,
97, 849-872.
https://doi.org/10.1016/j.future.2019.02.028.
Huber, C., Klimant, I., Krause, C., Werner, T., & Wolfbeis, O. S. (2001). Nitrate-selective optical sensor applying a lipophilic fluorescent potential-sensitive dye.
Analytica Chimica Acta,
449, 81-93.
https://doi.org/10.1016/S0003-2670(01)01363-0.
Kalimuthu, P., Fischer-Schrader, K., Schwarz, G. & Bernhardt, P. V. (2013). Mediated electrochemistry of nitrate reductase from Arabidopsis thaliana.
The Journal of Physical Chemistry B,
117, 7569-7577.
https://doi.org/10.1021/jp404076w.
Kalimuthu, P., Fischer-Schrader, K., Schwarz, G., & Bernhardt, P. V. (2015). A sensitive and stable amperometric nitrate biosensor employing
Arabidopsis thaliana nitrate reductase.
Journal of Biological Inorganic Chemistry,
20, 385-393.
https://doi.org/10.1007/s00775-014-1171-0.
Kalimuthu, P., Ringel, P., Kruse, T., & Bernhardt, P. V. (2016). Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa.
Biochimica et Biophysica Acta-Bioenergetics,
1857, 1506-1513.
https://doi.org/10.1016/j.bbabio.2016.04.001.
Khandelwal, M., & Armaghani, D. J. (2016). Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique.
Geotechnical and Geological Engineering,
34, 605-620.
https://doi.org/10.1007/s10706-015-9970-9.
Kim, W., Bae, S., Park, K., Lee, S., Choi, Y., Han, S., & Koh, Y. (2011). Biochemical characterization of digestive enzymes in the black soldier fly,
Hermetia illucens (Diptera: Stratiomyidae).
Journal of Asia-Pacific Entomology,
14(1), 11-14.
https://doi.org/10.1016/j.aspen.2010.11.003.
Kokabi, M., Tahir, M. N., Singh, D., & Javanmard, M. (2023). Advancing healthcare: synergizing biosensors and machine learning for early cancer diagnosis.
Biosensors,
13(9), 884.
https://doi.org/10.3390/bios13090884.
Kumar, V., Kumar, A., Chhabra, D., & Shukla, P. (2019). Improved biobleaching of mixed hardwood pulp and process optimization using novel GA-ANN and GA-ANFIS hybrid statistical tools.
Bioresource Technology,
271, 274-282.
https://doi.org/10.1016/j.biortech.2018.09.115.
Lambeck, I., Chi, J. C., Krizowski, S., Mueller, S., Mehlmer, N., Teige, M., & Schwarz, G. (2010). Kinetic analysis of 14-3-3-inhibited
Arabidopsis thaliana nitrate reductase.
Biochemistry,
49, 8177-8186.
https://doi.org/10.1021/bi1003487.
Legnerová, Z., Solich, P., Sklenářová, H., Šatı́nský, D., & Karlı́ček, R. (2002). Automated simultaneous monitoring of nitrate and nitrite in surface water by sequential injection analysis.
Water Research,
36, 2777-2783.
https://doi.org/10.1016/S0043-1354(01)00513-9.
Mohammadi, P., & Asefpour Vakilian, K. (2023). Machine learning provides specific detection of salt and drought stresses in cucumber based on miRNA characteristics.
Plant Methods,
19, 123.
https://doi.org/10.1186/s13007-023-01095-x.
Zheng, X., Zhang, F., Wang, K., Zhang, W., Li, Y., Sun, Y., Sun, X., Li, C., Dong, B., Wang, L., & Xu, L. (2021). Smart biosensors and intelligent devices for salivary biomarker detection.
TrAC Trends in Analytical Chemistry,
140, 116281.
https://doi.org/10.1016/j.trac.2021.116281.