نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار دانشگاه تهران- پردیس ابوریحان

2 گروه باغبانی، دانشکده فناوری ابوریحان،دانشگاه تهران، تهران ایران

3 فنی کشاورزی، دانشکده فناوری ابوریحان، دانشگاه تهران، تهران،ایران

چکیده

بکارگیری محیط های کنترل شده با کشت طبقاتی با نور مصنوعی یکی از راههای جایگزین تولید محصولات کشاورزی در فضای کنترل شده می باشد. با طیف نورهای مختلف ناشی از لامپ های ال ای دی می توان شرایط فتوسنتز گیاه را در کنار سایر پارامترهای مهم رشد گیاه در این گلخانه ها در بالاترین شکل فراهم نمود. در این تحقیق با استفاده از یک محیط کشت طبقاتی رشد کاهو پر طاووسی در طیف های مختلف نور مصنوعی مورد ارزیابی قرار گرفت. در این گلخانه تولید کاهو سه ترکیب طیف نوری متفاوت: (100% قرمز)، (75% قرمز + 25% آبی)، (50% قرمز + 25% آبی + 25% قرمز دور)، با سه تیمار نوردهی 12، 18 و 24 ساعته با شدت نور 250 میکرومول بر مترمربع بر ثانیه برای کشت کاهو با سیستم تغذیه هیدروپونیک مورد ارزیابی قرار گرفت. 216 گیاه کاهو در این گلخانه به صورت کامل رشد کردند و طیف نوری قرمز بیشترین عملکرد را داشت. با بررسی دقیق کارایی دستگاه فتوسنتز و اثرات متقابل کیفیت نور و مدت زمان نوردهی بر روی عملکرد محصول کاهو واریته پرطاووسی این نتیجه حاصل شد که ترکیب دقیق طیف نور و فتوپریود مناسب باعث افزایش عملکرد کاهو می شود. طیف نوری قرمز دور بیشترین نقش را در ارتفاع گیاه داشت. بیشترین وزن تر و خشک اندام هوایی در نوردهی 24 ساعته و در تیمارهای قرمز و آبی قرمز بدست آمد. وزن تر و خشک ریشه با کمترین مقدار نوردهی 12 ساعت به ثبت رسید.همچنین نوردهی دائمی باعث افزایش رشد رویشی گیاهان می شود.

کلیدواژه‌ها

 
Bula, R., Morrow, R., Tibbitts, T., Barta, D., Ignatius, R., & Martin, T. (1991). Light-emitting diodes as a radiation source for plants. HortScience, 26(2), 203-205.
Chen, X. L., Guo, W. Z., Xue, X. Z., Wang, L. C., & Qiao, X. J. (2014). Growth and quality responses of ‘Green Oak Leaf’lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae, 172, 168-175. https://doi.org/10.1016/j.scienta.2014.04.009.
Despommier, D. (2011). The vertical farm: controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. Journal für Verbraucherschutz und Lebensmittelsicherheit, 6(2), 233-236. https://doi.org/10.1007/s00003-010-0654-3.
Dougher, T. A., & Bugbee, B. (2001). Differences in the response of wheat, soybean and lettuce to reduced blue radiation. Photochemistry and Photobiology, 73(2), 199-207. https://doi.org/10.1562/0031-8655(2001)073<0199:ditrow>2.0.co;2.
Eigenbrod, C., & Gruda, N. (2015). Urban vegetable for food security in cities. A review. Agronomy for Sustainable Development, 35(2), 483-498. https://doi.org/10.1007/s13593-014-0273-y.
Emmerich, J. C., Morrow, R. C., Clavette, T. J., Sirios, L. J., & Lee, M. C. (2004). Plant Research Unit lighting system development (0148-7191). SAE Technical Paper, 2004-01-2454.  https://doi.org/10.4271/2004-01-2454.
Goins, G. D., Ruffe, L. M., Cranston, N. A., Yorio, N. C., Wheeler, R. M., & Sager, J. C. (2001). Salad crop production under different wavelengths of red light-emitting diodes (LEDs) (0148-7191). SAE Technical Papers. https://doi.org/10.4271/2001-01-2422.
Guo, H., Yang, H., Mockler, T. C., & Lin, C. (1998). Regulation of flowering time by Arabidopsis photoreceptors. Science, 279(5355), 1360-1363. https://doi.org/10.1126/science.279.5355.1360.
Hogewoning, S. W. (2010). An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. Journal of experimental botany, 61(5), 1267-1276. https://doi.org/10.1093/jxb/erq005.
Johkan, M., Shoji, K., Goto, F., Hashida, S. N., & Yoshihara, T. (2010). Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience, 45(12), 1809-1814. https://doi.org/10.21273/HORTSCI.45.12.1809.
Kasajima, S. Y., Inoue, N., Mahmud, R., & Kato, M. (2008). Developmental responses of wheat cv. Norin 61 to fluence rate of green light. Plant Production Science, 11(1), 76-81.  https://doi.org/10.1626/pps.11.76.
Kim, H. H., Goins, G. D., Wheeler, R. M., & Sager, J. C. (2004). Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. HortScience, 39(7). https://doi.org/10.21273/HORTSCI.39.7.1617.
Knight, S. L., & Mitchell, C. A. (1983). Stimulation of lettuce productivity by manipulation of diurnal temperature and light. HortScience, 18(4), 462-463. https://doi.org/10.21273/HORTSCI.18.4.462.
Koontz, H., & Prince, R. (1986). Effect of 16 and 24 hours daily radiation (light) on lettuce growth. HortScience, 21(1), 123-124 https://doi.org/10.21273/HORTSCI.21.1.123.
Kozai, T. (2013a). Plant factory in Japan-current situation and perspectives. Chronica Horticulture, 53(2), 8-11. https://doi.org/10.1016/B978-0-12-816691-8.00001-7.
Kozai, T. (2013b). Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proceedings of the Japan Academy, Series B, 89(10), 447-461. https://doi.org/10.2183/pjab.89.447.
Lefsrud, M. G., Kopsell, D. A., & Sams, C. E. (2008). Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience, 43(7), 2243-2244. https://doi.org/10.21273/HORTSCI.43.7.2243.
Lillo, C., & Appenroth, K. J. (2001). Light regulation of nitrate reductase in higher plants: Which photoreceptors are involved? Plant Biology, 3(5), 455-465. https://doi.org/10.1055/s-2001-17732.
Massa, G. D., Emmerich, J. C., Morrow, R. C., Bourget, C. M., & Mitchell, C. A. (2007). Plant-growth lighting for space life support: A review. Gravitational and Space Research, 19(2). https://doi.org/10.1080/23818107.2016.1194228.
Mitchell, C. A., Both, A. J., Bourget, C., Burr, J., Kubota, C., Lopez, R., Morrow, R. C., &  Runkle, E. (2012). LEDs: The future of greenhouse lighting! Chronica Horticulturae, 52(1), 6-12.
Miyashita, Y., Kimura, T., Kitaya, Y., Kubota, C., & Kozai, T. (1994). Effects of red light on the growth and morphology of potato plantlets in vitro: using Light Emitting Diodes (LEDS) as a light source for micropropagation. Proceedings of the ISHS Acta Horticulturae 418: III International Symposium on Artificial Lighting in Horticulture, Dec. 1, Noordwijkerhout, Netherlands.
Nhut, D. T., Takamura, T., Watanabe, H., Okamoto, K., & Tanaka, M. (2003). Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell, Tissue and Organ Culture, 73(1), 43-52. https://doi.org/10.1023/A:1022638508007.
Nijssen, C. T., Kuhn, O. A., & Verbeek, W. (1990). Method and device for lighting seeds or plants. Patent number: 4914858. Available at: https://patents.justia.com/patent/4914858.
Nishio, J. (2000). Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant, Cell & Environment, 23(6), 539-548. https://doi.org/10.1046/j.1365-3040.2000.00563.x.
Ohyama, K., Murase, H., Yokoi, S., Hasegawa, T., & Kozai, T. (2005). A precise irrigation system with an array of nozzles for plug transplant production. Transactions of the ASAE, 48(1), 211-215. https://doi.org/10.13031/2013.17956.
Ohyama, K., Takagaki, M., & Kurasaka, H. (2008). Urban horticulture: Its significance to environmental conservation. Sustainability Science, 3(2), 241-247. https://doi.org/10.1007/s11625-008-0054-0.
Ono, E., & Watanabe, H. (2006). Plant factories blossom. Resource, 13(2), 13-14.
Pessu, P., Agoda, S., Isong, I., & Ikotun, I. (2011). The concepts and problems of postharvest food losses in perishable crops. African Journal of Food Science, 5(11), 603-613.
Purves, W. K., Purves, W. K., Orians, G. H., Sadava, D., & Heller, H. C. (2003). Life: The science of biology: Plants and animals. Vol. III. W H Freeman & Co Pub.
Resh, H. M. (2016). Hydroponic food production: A definitive guidebook for the advanced home gardener and the commercial hydroponic grower. ISBN 9780367678753. CRC Press.
Schuerger, A. C., & Brown, C. S. (1997). Spectral quality affects disease development of three pathogens on hydroponically grown plants. HortScience, 32(1), 96-100. https://doi.org/10.21273/HORTSCI.32.1.96.
Shin, K. S., Murthy, H. N., Heo, J. W., Hahn, E. J., & Paek, K. Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum, 30(3), 339-343. https://doi.org/10.1007/s11738-007-0128-0.
Stutte, G. W., Edney, S., & Skerritt, T. (2009). Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience, 44(1), 79-82. https://doi.org/10.21273/HORTSCI.44.1.79.
Tarakanov, I., Yakovleva, O., Konovalova, I., Paliutina, G., & Anisimov, A. (2012). Light-emitting diodes: On the way to combinatorial lighting technologies for basic research and crop production. Proceedings of the VII International Symposium on Light in Horticultural Systems. Oct. 15-18, Wageningen (Netherlands).
Tennessen, D. J., Singsaas, E. L., & Sharkey, T. D. (1994). Light-emitting diodes as a light source for photosynthesis research. Photosynthesis research, 39(1), 85-92. https://doi.org/10.1007/BF00027146.
Vänninen, I., Pinto, D., Nissinen, A., Johansen, N., & Shipp, L. (2010). In the light of new greenhouse technologies: 1. Plant‐mediated effects of artificial lighting on arthropods and tritrophic interactions. Annals of Applied Biology, 157(3), 393-414. https://doi.org/10.1111/j.1744-7348.2010.00438.x
Xu, H. L., Xu, Q., Li, F., Feng, Y., Qin, F., & Fang, W .(2002). Applications of xerophytophysiology in plant production-LED blue light as a stimulus improved the tomato crop. Scientia Horticulturae, 148, 190-196. https://doi.org/10.1016/j.scienta.2012.06.044.
Yanagi, T., Okamoto, K., & Takita, S. (1996). Effect of blue and red light intensity on photosynthetic rate of strawberry leaves. Proseedings of the International Symposium on Plant Production in Closed Ecosystems 440. Aug. 26-29, Narita, Japan. https://doi.org/10.17660/ActaHortic.1996.440.65.