نوع مقاله : مقاله پژوهشی

نویسنده

استادیار بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

چکیده

آسیب­های ظاهری و داخلی به بذر در اثر نیروهای مکانیکی حاصل از ماشین­های فرآوری، کاهش درصد جوانه­زنی و قدرت رویشی بذر را به دنبال دارد. با هدف افزایش کارایی ماشین جین اره­ای در جداسازی الیاف از بذر، آزمایش فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار اجرا شد. سطوح فاکتورهای آزمایش، سرعت دورانی اره­های ماشین جین در سه سطح 300 (S1)، 350 (S2) و 400 (S3) دور بر دقیقه، رطوبت بذر در سه سطح
3-5 (M1)، 6-8 (M2) و 10-8 (M3) درصد و رقم بذر پنبه در دو سطح حکمت (V1) و گلستان (V2) بود. در ارتباط با بذر پنبه، متغیرهای طول، عرض، ضخامت، میانگین هندسی و ضریب کرویت اندازه­گیری شد. پس از فرآوری وش پنبه در ماشین جین، اندیس ضخامت پوست بذر، میزان مواد خارجی روی الیاف، ظرفیت موادی ماشین جین اره­ای، قوۀ نامیۀ بذر، سرعت جوانه­زنی بذر، شاخص بنیۀ بذر و نشت یونی نسبی تعیین شد. پس از تجزیۀ واریانس، مقایسه داده­های میانگین تیمارها با آزمون دانکن و معادلۀ رگرسیون بین تیمارهای آزمایش (متغیرهای مستقل) و پارامترهای اندازه­گیری شده (متغیرهای وابسته) صورت گرفت. نتایج تحقیق نشان داد که تیمارهای S1M2V2 و S1M1V1، به ترتیب با 40/2 و 90/1 کیلوگرم بر ساعت، بیشترین و کمترین مقدار ظرفیت موادی را ایجاد کرده­اند. با در نظر گرفتن سرعت دورانی و رطوبت یکسان، ظرفیت موادی ماشین در رقم گلستان 22/12 درصد بیشتر بود تا در رقم حکمت. معادلات رگرسیونی نشان داد که در رقم حکمت با افزایش سرعت دورانی اره­های ماشین جین، درصد جوانه‌زنی بذر افزایش و شاخص بنیۀ بذر کاهش می­یابد. در رقم گلستان نیز معادلات رگرسیونی نشان داد که افزایش سرعت دورانی اره­های ماشین جین، کاهش درصد جوانه­زنی و افزایش رطوبت، افزایش سرعت جوانه‌زنی را به دنبال دارد. سرعت دورانی 350 دور بر دقیقه، رطوبت 8-6 درصد و رقم پنبۀ گلستان، بیشینۀ درصد جوانه­زنی و سرعت جوانه­زنی بذر را به ترتیب با 67/93 درصد و 56/24 بذر در روز ایجاد کرد و قابل توصیه است.

کلیدواژه‌ها

 
Albaneze, R., Villela, F. A., Possenti, J. C., Guollo, K., & Riedo, I. C. (2018). Mechanical damage caused by the use of grain carts for transport during soybean seed harvest. Journal of seed Science, 40(4),
422-427. https://doi.org/10.1590/2317-1545v40n4174101.
Columbus, E. P., & Backe, E. E. (1992). Improved fiber and yarn quality through differential ginning. American Society of Agricultural Engineers, 8(2), 175-178. https://doi.org/10.13031/2013.26050.
Cooper, N. T. W., & Siebenmorgen, T. J. (2007). Correcting head rice yield for surface lipid content (degree of milling) variation. Cereal Chemistry, 84(1), 88-91. https://doi.org/10.1094/CCHEM-84-1-0088.
Divsalar, M., & Oskouie, B. (2011). Study the effect of mechanical damage at processing on soybean seed germination and vigor. Journal of Agricultural and Biological Science, 6(7), 60-64.
Dursun, E., & Dursun, I. (2005). Some physical properties of caper seed. Biosystems Engineering, 92(2), 237-245. https://doi.org/10.1016/j.biosystemseng.2005.06.003.
Ellis, R. A., & Roberts, E. H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9, 373-409.
Goli, A., Khazaei, J., Taheri, M., Khojamli, A., & Sedaghat, A. (2016). Effect of mechanical damage on soybean germination. International Academic Journal of Science and Engineering, 3(10), 48-58.
Gu, R. L., Huang, R., Jia, G. Y., Yuan, Z. P., Ren, L. S., Li, L. I., & Wang, J. H. (2019). Effect of mechanical threshing on damage and vigor of maize seed threshed at different moisture content. Journal of Integrative Agriculture, 18(7), 1571-1578. https://doi.org/10.1016/S2095-3119(18)62026-X.
Jongkaewwattana, S., & Geng, S. (2002). Non-uniformity of grain characteristics and milling quality of California rice (Oryza sativa L.) of different maturities. Journal of Agronomy and Crop Science, 188(3), 161-167. https://doi.org/10.1046/j.1439-037X.2002.00552.x.
Kaya, C., Kirnak, H., Higgs, D., & Satali, K. (2002). Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Plant Horticulture, 93, 65-74. https://doi.org/10.1016/S0304-4238(01)00313-2.
Kunze, O. R., & Calderwood, D. L. (2004). Rough rice drying moisture adsorption and desorption. Rice: Chemistry and Technology, 3, 223-268. https://doi.org/10.1094/1891127349.009.
Lutts, S., Kinet, J. M., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryzasatiova L.) varieties different in salinity resistance. Journal of Experimental Botany, 46, 1843-1852. https://doi.org/10.1093/jxb/46.12.1843.
Mandhanis, S., Madan, S., & Sawhnes, V. (2006). Antioxidant defense mechanism under salt stress in wheat seedlings. Biologia Plantarum, 50(2), 227-231. https://doi.org/10.1007/s10535-006-0011-7.
Masek, J., Kumhala, F., Novak, P., & Fic, T. (2016). Influence of different threshing system design on grain damage. Proceedings of the International Conference Engineering for Rural Development. May. 25-27. Jelgava, Latvia.
Mohsenin, N. (1986). Physical properties of plant and animal materials. New York, NY: Gordon and Breach.
Nowrozieh, Sh., Rezaee-Asl, A., & Miarkiani, S. (2011). Determining some physical properties of cotton seeds. Iranian Journal of Seed Science and Research, 1(1), 6-13. (in Persian)
Qinghua, S., Zhiyi, V., Zhun, Z., Quansheng, Y., & Qiong, Q. (2006). Effect of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedling of Cucumis Sativa L. Plant Growth Regulators, 48, 127-135. https://doi.org/10.1007/s10725-005-5482-6.
Razavi, M. A., & Akbari, R. (2023). Biophysical properties of agricultural & food materials. Mashhad: Ferdowsi University of Mashhad Press. (in Persian)
Shahbazi, F. (2011). Impact damage to chickpea seeds as affected by moisture content and impact velocity. Applied Engineering in Agriculture, 27(5), 771-775. https://doi.org/10.13031/2013.39557.
Shahbazi, F. (2012). A study on the seed susceptibility of wheat (Triticum aestivum L.) cultivars to impact damage. Journal of Agricultural Science and Technology, 14(3), 505-512.
Shahbazi, F. (2020). Mechanical damage in agricultural grains (causes and solutions). Lorestan: Lorestan University Press.
Shahbazi, F., Valizadeh, S., & Dowlatshah, A. (2017). Mechanical damage to green and red lentil seeds. Food Science & Nutrition, 5(4), 943-947. https://doi.org/10.1002/fsn3.480.
Szwed, G., & Lukaszuk, J. (2007) Effect of rapeseed and wheat kernel moisture on impact damage. International Agrophysics, 21(3), 299-304.
Yan, T. Y., Hong, J. H., & Chung, J. H. (2005). An improved method for the production of white rice with embryo in a vertical mill. Biosystems Engineering, 92(3), 317-323. https://doi.org/10.1016/j.biosystemseng.2005.07.014.