Al Faruq, A., Zhang, M., Bhandari, B., Azam, S. R., & Khatun, M. H. A. (2019). New understandings of how dielectric properties of fruits and vegetables are affected by heat-induced dehydration: A review.
Drying Technology, 37(14), 1780-1792.
https://doi.org/10.1080/07373937.2018.1538157.
Alshami, A. S. (2007). Dielectric properties of biological materials: a physical-chemical approach (Ph. D. Thesis), Washington State University, USA.
Arumugam, S., Theivaprakasham, H., Kamakshidevi, M. R., Suburaaj, R., & Sabarish, N. B. (2019).
Capacitance based Non-destructive technique for post-harvest sugarcane quality prediction. Proceedings of the 2019 9th International Symposium on Embedded Computing and System Design (ISED). Dec. 13-14. https://doi.org/
10.1109/ISED48680.2019.9096248.
Asadi, A., Naderi-Boldaji, M., Lotfalian, A., Ghasemi-Varnamkhasti, M., & Abdanan Mehdizadeh, S. (2023). Development and Evaluation of a Proximal Dielectric Sensor for Nondestructive Measurement of Sugar Concentration in Sugar Beet.
Agricultural Mechanization and Systems Research, 23, 33-48.
https://doi.org/10.22092/amsr.2023.360854.1434. (in Persian)
Bagheri, R., Mireei, S, A., Sadeghi, M., Masoumi, A., & Mumksh, Sh. (2014). Measuring the moisture content of dates with a non-destructive dielectric method. Iranian Journal of Biosystems Engineering, 45(2), 97-104. (in Persian)
Bakam Nguenouho, O. S., Chevalier, A., Potelon, B., Benedicto, J., & Quendo, C. (2022). Dielectric characterization and modelling of aqueous solutions involving sodium chloride and sucrose and application to the design of a bi-parameter RF-sensor. Scientific Reports, 12(1), 7209.
Cao, M., Zeng, S., Wang, J., & Guo, W. (2023). Dielectric properties of peaches with and without skin during storage and their relationship to internal quality.
Postharvest Biology and Technology,
204, 112-433.
https://doi.org/10.1016/j.postharvbio.2023.112433.
Chen, J. C., & Chou, C. C. (1993). Cane sugar handbook: a manual for cane sugar manufacturers and their chemists. New York: General and Introductory Food Science and Technology.
De Whalley, H. C. S. (1964). ICUMSA methods of sugar analysis: official and tentative methods recommended by the International Commission for Uniform Methods of sugar analysis (ICUMSA). Netherlands: Elsevier.
El Khaled, D., Castellano, N. N., Gázquez, J. A., Perea-Moreno, A. J., & Manzano-Agugliaro, F.
(2016). Dielectric spectroscopy in biomaterials. Agrophysics.
Materials,
9(5), 310.
https://doi.org/10.3390/ma9050310.
Fazayeli, A., Kamgar, S., Nassiri, S. M., Fazayeli, H., & de la Guardia, M. (2019). Dielectric spectroscopy as a potential technique for prediction of kiwifruit quality indices during storage.
Information Processing in Agriculture,
6(4), 479-486.
https://doi.org/10.1016/j.inpa.2019.02.002.
Ghatreh-Samani, N., Naderi-Boldaji, M., Ghasemi-Varnamkhasti, M.., Mehraban, H., & Bonyadian, M. (2017). Application of dielectric spectroscopy method with a parallel plate sensor to detect the freshness of milk. New Technologies in the Food Industry (New Food Technologies), 15(4), 53-63. (in Persian)
Guo, W., Fang, L., Liu, D., & Wang, Z. (2015). Determination of soluble solids content and firmness of
pears during ripening by using dielectric spectroscopy.
Computers and Electronics in Agriculture,
117, 226-233.
https://doi.org/10.1016/j.compag.2015.08.012.
Haq, T., Ruan, C., Zhang, X., Ullah, S., Fahad, A. K., & He, W. (2020). Extremely sensitive microwave sensor for evaluation of dielectric characteristics of low-permittivity materials.
Sensors, 20(7), 1916.
https://doi.org/10.3390/s20071916.
Hoog-Antonyuk, N. A., Olthuis, W., Mayer, M. J. J., Yntema, D., Miedema, H., & Van den Berg, A. (2012). On-line fingerprinting of fluids using coaxial stub resonator technology.
Sensors and Actuators B: Chemical, 163(1), 90-96.
https://doi.org/10.1016/j.snb.2012.01.012.
Keyvani, F., Naderi-Boldaji, M., Ghasemi-Varnamkhasti, M., & Izadi, Z. (2021). Feasibility study on detecting different types of sugar solutions using a dielectric resonator sensor.
Innovative Food Technologies (IFT), 8(4), 429-415. https://doi.org/
10.22104/JIFT.2021.4901.2043. (in Persian)
Khaled, D. E., Novas, N., Gazquez, J. A., Garcia, R. M., & Manzano-Agugliaro, F. (2015). Fruit and vegetable quality assessment via dielectric sensing. Sensors,
Agricultural and Food Biotechnology. 15(7), 15363-15397.
https://doi.org/10.3390/s150715363.
Khalilian, H., Naderi-Boldaji, M., Ghasemi-Varnamkhasti, M., & Rostami, S. (2017). In-flow testing of a cylindrical dielectric sensor for measuring the sugar concentration of sugar beet syrup.
Innovative Food Technologies (IFT), 4(2), 131-140. https://doi.org/
10.22104/JIFT.2016.435. (in Persian)
Meade, G. P., & Chen, J. C. P. (1977). Cane sugar handbook: a manual for cane sugar manufacturers and their chemists. John Wiley and Sons.
Mireei, S. A., Bagheri, R., Sadeghi, M., & Shahraki, A. (2016). Developing an electronic portable device based on dielectric power spectroscopy for non-destructive prediction of date moisture content.
Sensors and Actuators A: Physical, 247, 289-297.
https://doi.org/10.1016/j.sna.2016.06.012.
Naderi-Boldaji, M., Tohidi, M., & Ghasemi-Varnamkhasti, M. (2023). Evaluation of dielectric spectroscopy in fusion with Vis-SWNIR spectroscopy for measurement of sugar concentration on sugarcane stalk samples. In Press. (in Persian)
Naderi-Boldaji, M., Fazeliyan-Dehkordi, M., Mireei, S. A., & Ghasemi-Varnamkhasti, M. (2015). Dielectric power spectroscopy as a potential technique for the non-destructive measurement of sugar concentration in sugarcane.
Biosystems Engineering,
140, 1-10.
https://doi.org/10.1016/j.biosystemseng.2015.09.003.
Naderi-Boldaji, M., Mishra, P., Ahmadpour-Samani, M., Ghasemi-Varnamkhasti, M., Ghanbarian, D., & Izadi, Z. (2018). Potential of two dielectric spectroscopy techniques and chemometric analyses for detection of adulteration in grape syrup.
Measurement, 127, 518-524.
https://doi.org/10.1016/j.measurement.2018.06.015.
Phuphaphud, A., Saengprachatanarug, K., Posom, J., Maraphum, K., & Taira, E. (2020). Non-destructive and rapid measurement of sugar content in growing cane stalks for breeding programmes using visible-near infrared spectroscopy.
Biosystems Engineering, 197, 76-90.
https://doi.org/10.1016/j.biosystemseng.2020.06.012.
Shushtri, M., Ahmadiyya, S., & Isfia, Q. (2008). Sugarcane in Iran. Ayez Pub, Iran. (in Persian)
Taira, E., Ueno, M., Saengprachatanarug, K., & Kawamitsu, Y. (2013). Direct sugar content analysis for whole stalk sugarcane using a portable near infrared instrument. Journal of Near Infrared Spectroscopy, 21(4), 281-287.
Teseme, W. B., & Weldeselassie, H. W. (2020). Review on the study of dielectric properties of food materials.
American Journal of
Engineering and
Technology Management,
5, 76-83. https://doi.org/
10.11648/J.AJETM.20200505.11.
Thomason, S. J., & Bialkowski, K. S. (2019). Dielectric spectroscopy based determination of sugar content in solution
Sensors Letters,
3(5), 1-4. https://doi.org/
10.1109/LSENS.2019.2910832.
Ungureanu, N., Vlăduț, V., & Biriș, S. Ș. (2022). Sustainable Valorization of Waste and By-Products.from Sugarcane Processing
. Sustainability, 14(17), 11089.
https://doi.org/10.3390/su141711089.
Uppal, S. K. (2003). Post harvest losses in sugarcane. Sugar Technology, 5(2), 93-94.
Vaezi Zadeh, M., Shams, M., Afrooz, K., & Rostami, M. (2018). The Dielectric Properties of Agri-food Materials measuring techniques. Proceedings of the Biosystem Mechanical Engineering and Mechanization of Iran. Sep. 3-5. Hamedan Universit, Iran. (in Persian)
Valantina, S. R. (2021). Measurement of dielectric constant: A recent trend in quality analysis
of vegetable oil-A review.
Trends in Food Science & Technology,
113, 1-11.
https://doi.org/10.1016/j.tifs.2021.04.026.
Yousefi, B., Barzkar, M., Temar, M., Rakhshandero, M., & Mousavi Moghadam, L. (2016). Sugarcane cultivation. Tak Pub, Iran. (in Persian)