نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار موسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 دانشیار موسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 دانشیار موسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

 کرم میوه‌خوار گوجه‌فرنگی (هلیوتیس) یکی از مخرب‌ترین آفت­های گیاهان خانوادۀ سولاناسه در بسیاری از مناطق کشور است. در صورت وجود شرایط محیطی مساعد، این آفت به‌ سرعت گسترش می‌یابد. در سال‌های اخیر از پهپاد‌ سمپاش به‌ منظور کنترل دیگر آفت­ها استفاده‌ شده ولی عملکرد این سمپاش‌ها برای مبارزه با این آفت در مزارع گوجه‌فرنگی ارزیابی نشده است. در این تحقیق در مزرعه آلوده به آفت هلیوتیس، روش استفاده از پهپاد سمپاش با روش‌های‌ رایج سمپاش لانس­دار تراکتوری و سمپاش اتومایزر پشتی در قالب طرح بلوک­های کامل تصادفی و در سه تکرار مقایسه شد. نتایج نشان داد در سمپاش‌های لانس‌دار، اتومایزر و پهپاد مصــرف محـلول سم به ترتیب 1200 و 211 و 32 لیتر در هکتار، بادبردگی 6/45، 06/13 و 68/20 درصد و بازده مزرعه‌ای 66/60، 69 و 2/90 درصد است. روش استفاده از پهپاد در 14 روز پس از سمپاشی با 75/59 درصد کارایی، نسبت به روش‌های اتومایزر و لانس به ترتیب با 06/40 و 75/41 درصد، از کارایی بهتری برخوردار بوده است. در روزهای چهارم و هشتم نیز روش استفاده از پهپاد ازنظر درصد کارایی نسبت به روش‌های اتومایزر و لانس‌دار برتری داشته است. ضریب کیفیت پاشش در سمپاش­های اتومایزر و پهپاد به ترتیب 88/2 و 23/1 بود. از نظر اقتصادی، نسبت سـود به هزینه در سمپاش­های لانس‌دار، اتومایزر و پهپاد به ترتیب 15/4، 88/4 و 33/2 بود. در نهایت استفاده از پهپاد به‌ منظور کنترل آفات گوجه‌فرنگی از نظر فنی قابل توصیه است ولی از نظر اقتصادی باید بررسی بیشتری شود.

کلیدواژه‌ها

Ahmadichenari, H., Hasheminia, M., & Afsar, A. (2005). Study and investigation of the number of working days suitable for carrying out the spraying operation of cotton fields in Varamin region. Scientific-Research Journal of Agricultural Sciences, 12(1),164-180. (in Persian)
Bagheri, N., Safari, M., & Sheikhi Garjan, A. (2022). Performance evaluation of the UAV sprayer in the control of Brevicoryne Brassicae L. pest in Canola. Journal of Agricultural Machinery. https://doi.org/10.22067/jam.2022.79329.1129. (in Persian)
Chen, P., Lan, Y., Huang, X., Qi, H., Wang, G., Wang, J., Wang, L., & Xiao, H. (2020). Droplet deposition and control of planthoppers of different nozzles in two-stage rice with a quadrotor unmanned aerial vehicle. Agronomy, 10(303), 1-14. https://doi.org/10.3390/agronomy10020303.
Gibbs, J., Peters, T. M., & Heack, L. P. (2021). Comparison of droplet size, coverage, and drift potential from UAV application methods and ground application methods on row crops. Transaction of ASABE, 64(3), 819-828. https://doi.org/10.13031/trans.14121.
Giles, D. K., & Billing, R. C. (2015). Deployment and performance of a UAV for crop spraying. Chemical Engineering Transactions, 44, 307-312. https://doi.org/10.3303/CET1544052.
Huang, H., Deng, J., Lan, Y., Yang, A., Deng, X., & Zhang, L. (2018). A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. Plos One, 13(4), e0196302. https://doi.org/10.1371/journal.pone.0196302.
Karimi, K. (2019). Integrated management of tomatoe fruit worm (Heliotis). No. 9906101, Plant Protection Organization, Pest Control Deputy, Intelligence Office.
Kharim, M. N. A., Wayayok, A., Shariff, Sharif, A. R. M., Abdullah, A. F., & Husin, E. M. (2019). Droplet deposition density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation. Computers and Electronics in Agriculture 167, 105045. https://doi.org/10.1016/j.compag.2019.105045.
Martin, D. E., Wold, W. E., & Latheef, M. A. (2019). Effect of application height and ground speed on spray pattern and droplet spectra from remotely piloted aerial application systems. Drones, 3(83), 1-21. https://doi.org/10.3390/drones3040083.
Meng.Y., Su, J., Song, J., Chen, W. H., & Lan, Y. (2020). Experimental evaluation of UAV spraying for peach trees of different shapes: Effects of operational parameters on droplet distribution. Computers and Electronics in Agriculture. 170, 105282. https://doi.org/10.1016/j.compag.2020.105282.
Miller, J. W. (2005). Report on the development and operation of a UAV for an experiment on theunmanned application of pesticides. Youngstown, Ohio: AFRL, USAF.
Safari, M., & Bagheri, N. (2021). Technical criteria for the evaluation of sprayer drones. Technical Instructions. Agricultural Engineering Research Institute. (in Persian)
Safari, M., & Sheikhi Garjan, A. (2020). Comparison between unmanned aerial vehicle and tractor lance sprayer against Dubas. bug Ommatissus lybicus (Hemiptera: Tropiduchidae). Iranian Journal of Plant ProtectionScience, 51(1), 13-26. https://doi.org/10.22059/ijpps.2020.281898.1006894. (in Persian)
Safari, M., Bagheri, N., Sheikhi Garjan, A., & Zarifneshat, S. (2022). Evaluation and comparison of sprayer drone to control tuta pest in tomato crop. Agricultural Mechanization and Systems Research, 23(84), 1-16. https://doi.org/10.22092/amsr.2023.361037.1435.
 Soltani, G. (2008). Engineering economics. Second Ed. Shiraz University Press. (in Persian)
Wang, S. L., Song, J. L., He, X. K., Song, L., Wang, X. N., Wang, C., Wang, Z., & Ling, Y. (2017). Performances evaluation of four typical unmanned aerial vehicles used for pesticide application in China. International Journal of Agricultural and Biological Engineering, 10(4), 22-31. https://doi.org/10.25165/j.ijabe.20171004.3219.
 Xinyu, X., Kang, T., Weicai, Q., Lan, Y and Zhang, H. (2014). Drift and deposition of ultra-low altitude and low volume application in paddy field. International Journal of Agricultural and Biological Engineering, 7(4), 23-28.
Yallappa, D. (2017). Development and evaluation of drone mounted sprayer for pesticide applications to crops. Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC). Oct. 19-22. San Jose, CA, USA.
Yousefi, R. (2015). Determining the number of suitable working days for spraying wheat fields in Qazvin province. Journal of Biosystems Engineering, 4(2), 12-28. (in Persian)