نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رشته مهندسی مکانیزاسیون کشاورزی، گروه مهندسی ماشین‌های کشاورزی، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانشیار رشته مهندسی مکانیزاسیون کشاورزی، گروه مهندسی ماشین‌های کشاورزی، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

با هدف انتخاب راهکار مناسب برای مدیریت پسماند صنعت روغن زیتون در شهرستان رودبار استان گیلان،
به منظور انتخاب پیشینه پژوهش بررسی و مشورت با کارشناسان انجام گرفت. چهار معیار اقتصادی، فنی، اجتماعی و زیست‌محیطی به‌ عنوان معیارهای گزینش راهکار مناسب انتخاب و به 12 زیرمعیار تقسیم شدند. پرسش‌نامه‌ به‌ صورت مقایسات زوجی، طراحی و به روش نمونه‌گیری هدفمند از طریق مصاحبه با 20 نفر از کارشناسان ماهر این حوزه تکمیل شد. برای محاسبات و تجزیه‌ و تحلیل داده‌ها از روش تحلیل سلسله مراتبی (AHP) استفاده شد. نتایج پژوهش نشان داد که معیار اقتصادی تأثیرگذارترین معیار با وزن 478/0 برای انتخاب روش مدیریت پسماند صنعت روغن زیتون است. پس از آن، طبق نظر خبرگان، به ترتیب معیارهای فنی با وزن 248/0، زیست‌محیطی با وزن 183/0 و اجتماعی با وزن 091/0 در رتبه‌های بعدی اهمیت قرار گرفتند. در رتبه‌بندی گزینه‌های مسئله، راهکار تولید کمپوست با وزن 245/0 بهترین روش برای مدیریت پسماند روغن زیتون در استان گیلان شناسایی شد. پس از آن به ترتیب روش‌های تولید انرژی تجدیدپذیر (243/0) در رتبه دوم، تولید خوراک دام (236/0) در رتبه سوم، استخراج مواد باارزش (194/0) در رتبه چهارم اهمیت و دفن در لندفیل (082/0) در رتبه آخر قرار گرفتند.

کلیدواژه‌ها

Aissaoui, M. H., Trabelsi, A. B. H., Abidi, S., Haddad, Kh., Jamaaoui, F., Zaafouri, K., Leahy, J. J., & Kwapinski, W. (2021). Sustainable biofuels and biochar production from olive mill wastes via co-pyrolysis process. Biomass Conversion and Biorefinery, 13, 8877-8890. https://doi.org/10.1007/s13399-021-01735-z.
Alburquerque, J. A., Gonzálvez, J., García, D., & Cegarra, J. (2006). Measuring detoxification and
maturity in compost made from “alperujo”, the solid by-product of extracting olive oil by the
two-phase centrifugation system. Chemosphere64(3), 470-477. https://doi.org/10.1016/j.chemosphere.2005.10.055.
Alonso-Fariñas, B., Oliva, A., Rodríguez-Galán, M., Esposito, G., García-Martín, J. F., Rodríguez-Gutiérrez, G., Serrano, A., & Fermoso, F. G. (2020). Environmental assessment of olive mill solid waste valorization via anaerobic digestion versus olive pomace oil extraction. Processes8(5), 626. https://doi.org/10.3390/pr8050626.
Anon. (2022). Horticultural and greenhouse products report. Jahad Ministry's Agricultural Statistics. Ministry of Agricultural-Jahad. (in Persian)
Batuecas, E., Tommasi, T., Battista, F., Negro, V., Sonetti, G., Viotti, P., Fino, D., & Mancini, G. (2019). Life Cycle Assessment of waste disposal from olive oil production: Anaerobic digestion and conventional disposal on soil. Journal of Environmental Management237, 94-102. https://doi.org/10.1016/j.jenvman.2019.02.021.
Del Pozo, A., Brunel-Saldias, N., Engler, A., Ortega-Farias, S., Acevedo-Opazo, C., Lobos, G. A., Jara-Rojas, R., & Molina-Montenegro, M. A. (2019). Climate change impacts and adaptation strategies of agriculture in Mediterranean-climate regions (MCRs). Sustainability, 11(10), 2769. https://doi.org/10.3390/su11102769.
El Hanandeh, A. (2015). Energy recovery alternatives for the sustainable management of olive oil industry waste in Australia: life cycle assessment. Journal of Cleaner Production91, 78-88. https://doi.org/10.1016/j.jclepro.2014.12.005.
Filippi, C., Bedini, S., Levi-Minzi, R., Cardelli, R., & Saviozzi, A. (2002). Cocomposting of olive oil mill by-products: chemical and microbiological evaluations. Compost Science & Utilization10(1), 63-71. https://doi.org/10.1080/1065657X.2002.10702064.
Foti, P., Pino, A., Romeo, F. V., Vaccalluzzo, A., Caggia, C., & Randazzo, C. L. (2022). Olive pomace and pâté olive cake as suitable ingredients for food and feed. Microorganisms10(2), 237. https://doi.org/10.3390/microorganisms10020237.
Gompf, K., Traverso, M., & Hetterich, J. (2021). Using Analytical Hierarchy Process (AHP) to introduce weights to social life cycle assessment of mobility services. Sustainability, 13(3), 1258. https://doi.org/10.3390/su13031258.
Khdair, A. I., Abu-Rumman, G., & Khdair, S. I. (2019). Pollution estimation from olive mills wastewater in Jordan. Heliyon5(8), e02386. https://doi.org/10.1016/j.heliyon.2019.e02386.
Khounani, Z., Hosseinzadeh-Bandbafha, H., Moustakas, K., Talebi, A. F., Goli, S. A. H., Rajaeifar, M. A., Khoshnevisan, B., Salehi Jouzani, Gh., Peng, W., Kim, K., Aghbashlo, M., Tabatabaei, M., & Lam, S. S. (2021). Environmental life cycle assessment of different biorefinery platforms valorizing olive wastes to biofuel, phosphate salts, natural antioxidant, and an oxygenated fuel additive (triacetin). Journal of Cleaner Production278, 123916. https://doi.org/10.1016/j.jclepro.2020.123916.
Lobna, L., Guergueb, Z., Chaieb, M., & Mekki, A. (2020). Co-composting of olive industry wastes with poultry manure and evaluation of the obtained compost maturity. Waste and Biomass Valorization11, 6235-6247. https://doi.org/10.1007/s12649-019-00901-9.
Miraei Ashtiani, S. H. M., Rafiee, M., Morad, M. M., Khojastehpour, M., Khani, M. R., Rohani, A., Shokri, B., & Martynenko, A. (2020). Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innovative Food Science & Emerging Technologies63, 102381.
Miraei Ashtiani, S. H., Rafiee, M., Mohebi Morad, M., & Martynenko, A. (2022). Cold plasma pretreatment improves the quality and nutritional value of ultrasound-assisted convective drying: The case of goldenberry. Drying Technology, 40(8), 1639-1657. https://doi.org/10.1080/07373937.2022.2050255.
Mohammadpour, P., Dadashi, M., Ghanadamouz, M., Ebadat Talab, M., & Dadashpour, A. A. (2019). The attitudes of gardeners of Rudbar city, Gilan, regarding olive fruit fly pest management. Olive Production and Processing, 1(2), 47-60. (in Persian)
Muezzinoglu, A. (2023). Future trends in olive industry waste management: A literature review. In: S. Souabi., & A. Anouzla (Eds.) Wastewater from olive oil production, Environmental impacts, treatment and valorisation, Springer. https://doi.org/10.1007/978-3-031-23449-1_10.
Niazmand, R., Jahani, M., & Kalantarian, S. (2019). Treatment of olive processing wastewater by electrocoagulation: An effectiveness and economic assessment. Journal of Environmental Management248, 109262. https://doi.org/10.1016/j.jenvman.2019.109262.
Puig-Gamero, M., Parascanu, M. M., Sánchez, P., & Sanchez-Silva, L. (2021). Olive pomace versus natural gas for methanol production: a life cycle assessment. Environmental Science and Pollution Research28(23), 30335-30350. https://doi.org/10.1007/s11356-021-12710-6.
Rafiee, M., & Ghasemi Mobtaker, H. (2022). Identification and prioritization of factors affecting citrus losses in northern provinces of Iran by the AHP method. Journal of Researches in Mechanics of Agricultural Machinery11(3), 45-58. https://doi.org/10.22034/jrmam.2022.10176.566. (in Persian)
Rajaeifar, M. A., Akram, A., Ghobadian, B., Rafiee, S., Heijungs, R., & Tabatabaei, M. (2016). Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment. Energy, 106, 87-102. https://doi.org/10.1016/j.energy.2016.03.010.
Rubio-Senent, F., Rodríguez-Gutiérrez, G., Lama-Muñoz, A., & Fernández-Bolaños, J. (2015). Pectin extracted from thermally treated olive oil by-products: Characterization, physico-chemical properties, in vitro bile acid and glucose binding. Food Hydrocolloids43, 311-321. https://doi.org/10.1016/j.foodhyd.2014.06.001.
Ruiz, E., Romero‐García, J. M., Romero, I., Manzanares, P., Negro, M. J., & Castro, E. (2017). Olive‐derived biomass as a source of energy and chemicals. Biofuels, Bioproducts and Biorefining, 11(6), 1077-1094. https://doi.org/10.1002/bbb.1812
Saaty, T. L. (1988). What is the analytic hierarchy process? In: M. Gautam., H. J. Greenberg., F. A. Lootsma., M. J. Rijkaert., & H. J. Zimmermann (Eds.) Mathematical models for decision support. Berlin, Heidelberg: Springer.
Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83-98. https://doi.org/10.1504/IJSSCI.2008.017590.
Salomone, R., & Ioppolo, G. (2012). Environmental impacts of olive oil production: a Life Cycle Assessment case study in the province of Messina (Sicily). Journal of Cleaner Production28, 88-100. https://doi.org/10.1016/j.jclepro.2011.10.004.
Seyedi Marghaki, A., Hamidoghli, Y., & Ghasemnezhad, M. (2017). Effect of olive mill pomace compost on yield, oil percentage and the leaf elements content in two olive cvs ’Zard’ and ’Roughany’. Journal of Plant Production Research, 24(2), 125-137. https://doi.org/10.22069/jopp.2017.11350.2054. (in Persian)
Shahnazari, A., Rafiee, M., Rohani, A., Nagar, B. B., Ebrahiminik, M. A., & Aghkhani, M. H. (2020). Identification of effective factors to select energy recovery technologies from municipal solid waste using multi-criteria decision making (MCDM): A review of thermochemical technologies. Sustainable Energy Technologies and Assessments, 40, 100737. https://doi.org/10.1016/j.seta.2020.100737.
Sharifi, M., Akram, A., Rafiee, S., & Sabzehparvar, M. (2014). Prioritization of strategic agricultural crops in Alborz province using the Fuzzy Delphi method and the Analytical Hierarchy Process (AHP). Journal of Agricultural Machinery4(1), 116-124. https://doi.org/10.22067/jam.v4i1.33174. (in Persian)
Tayeh, H. A., Najami, N., Dosoretz, C., Tafesh, A., & Azaizeh, H. (2014). Potential of bioethanol production from olive mill solid wastes. Bioresource Technology152, 24-30. https://doi.org/10.1016/j.biortech.2013.10.102.
Ulusoy, Y., & Ulukardesler, A. H. (2017). Biogas production potential of olive-mill wastes in Turkey. Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA). Nov. 5-8. San Diego, California, USA. https://doi.org/10.1109/ICRERA.2017.8191143.