نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد؛ گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استادیار گروه باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 دانشجوی دکتری گروه مکانیک بیوسیستم دانشگاه تربیت مدرس، تهران، ایران

چکیده

در این تحقیق از یک دستگاه حرارت­دهی اهمیک برای ارزیابی  عملکرد سامانۀ اهمیک در سه گرادیان ولتاژ (5/7، 25/9 و 5/11 ولت در سانتی‌متر)، سه نوع الکترود (استیل، برنجی و آلومینیمی) و سه غلظت محلول اهمیک متشکل از 20 میلی‌لیتر آب و سه مقدار نمک (1، 2 و 3 گرم) برای پختن قارچ استفاده شد. در این فرایند جریان ورودی، ضریب هدایت الکتریکی و ضریب عملکرد سامانه در حین فرایند پختن قارچ محاسبه و داده‌های به ‌دست ‌آمده با استفاده از نرم‌افزار آماری تحلیل گردید. نتایج به ‌دست ‌آمده نشان داد که هر سه فاکتور گرادیان ولتاژ، نوع الکترود و غلظت محلول تأثیر معنی‌داری بر فاکتورهای مورد بررسی داشته است و بیشترین تأثیر مربوط به گرادیان ولتاژ بوده و پس از آن نوع الکترود و غلظت محلول اهمیک تأثیر معنی‌داری روی فاکتورهای جریان ورودی، ضریب هدایت الکتریکی و ضریب عملکرد سامانه داشته است. با توجه به نتایج به‌ دست ‌آمده می‌توان گفت که بهترین نوع الکترود استفاده ‌شده الکترود آلومینیم و بهترین غلظت، 3 گرم نمک و 20 میلی­لیتر آب بوده که بالاترین مقادیر جریان ورودی، ضریب هدایت الکتریکی و ضریب عملکرد در این غلظت و الکترود به­ دست آمده است.

کلیدواژه‌ها

Amiali, M., Ngadi, M. O., Raghavan, V. G., & Nguyen, D. H. (2006). Electrical conductivities of liquid egg products and fruit juices exposed to high pulsed electric fields. International Journal of Food Properties, 9(3), 533-540.‏ Doi:10.1080/10942910600596456.
 
Anwar, J., Shafique, U., Waheed-uz-Zaman, R., Salman, M., Dar, A., Anzano, J. M., Ashraf, U., & Ashraf, S. (2015). Microwave chemistry: Effect of ions on dielectric heating in microwave ovens. Arabian Journal of Chemistry, 8(1), 100-104. Doi:10.1016/j.arabjc.2011.01.014.
 
Azadbakht, M., Vahedi Torshizi, M. V., & Kashaninejad, M. (2020). Application of the response surface method in the analysis of ohmic heating process performance in sour orange juice processing. Agricultural Engineering International: CIGR Journal, 22(3), 250-261.
 
Cappato, L. P., Ferreira, M. V. S., Guimaraes, J. T., Portela, J. B., Costa, A. L. R., Freitas, M. Q., & Cruz, A. G. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science and Technology, 62, 104-112. Doi: 10.22067/Jam.V7i1.47150. (in Persian)
 
Castro, I., Teixeira, J. A., Salengke, S., Sastry, S. K., & Vicente, A. A. (2004). Ohmic heating of strawberry products: Electrical conductivity measurements and ascorbic acid degradation kinetics. Innovative Food Science and Emerging Technologies, 5(1), 27-36. Doi:10.1016/J.Ifset.2003.11.001.
 
Darvishi, H., (2012). Ohmic Heating Behaviour and Electrical Conductivity of Tomato Paste. Journal of Nutrition & Food Sciences, 2(9), 1000167. Doi: 10.4172/2155-9600.1000167.
 
Darvishi, H., Hosainpour, A., Nargesi, F., & Fadavi, A. (2015). Exergy and energy analyses of liquid food in an Ohmic heating process: A case study of tomato production. Innovative Food Science and Emerging Technologies, 31, 73-82. Doi:10.1016/j.ifset.2015.06.012.
 
Darvishi, H., Khostaghaza, M. H., & Najafi, G. (2013). Ohmic heating of pomegranate juice: Electrical conductivity and pH change. Journal of the Saudi Society of Agricultural Sciences, 12(2), 101–108. Doi:10.1016/j.jssas.2012.08.003.
 
Ghasemi, M., Khojastehpour, M., & Aghkhani, M. H. (2014). Evaluating the Mechanical Properties of Tomato Based on Electrical Conductivity. Journal of Agricultural Machinery, 4(2), 314-323.‏ Doi:10.22067/jam.v4i2.34825. (in Persian)
 
Icier, F., Ilicali, C. (2005). Temperature dependent electrical conductivities of fruit purees during ohmic heating. Food Research, 38, 135-1142. Doi:10.1016/j.foodres.2005.04.003.
 
Jaeger, H., Roth, A., Toepfl, S., Holzhauser, T., Engel, K. H., Knorr, D., Rudi F. Vogel, R. F., Bandick, N., Kulling, S., Heinz, Volker., & Steinberg, P. (2016). Opinion on the use of ohmic heating for the treatment
of foods. Trends in Food Science & Technology, 55, 84-97.‏  Doi:10.1016/j.tifs.2016.07.007.
 
Kanjanapongkul, K. (2017). Rice cooking using ohmic heating: Determination of electrical conductivity, water diffusion and cooking energy. Journal of Food Engineering, 192, 1-10. Doi:10.1016/j.jfoodeng.2016.07.014.
 
Kautkar, S., Pandey, R. K., Richa, R., & Kothakota, A. (2015). Temperature dependent electrical conductivities of ginger paste during ohmic heating. International Journal of Agriculture, Environment and Biotechnology, 8(1), 21-27. DOI:10.5958/2230-732X.2015.00003.0.
 
Kim, S. S., Choi, W., & Kang, D. H. (2017). Application of low frequency pulsed ohmic heating for inactivation of foodborne pathogens and MS-2 phage in buffered peptone water and tomato juice. Food Microbiology, 63, 22-27. Doi:10.1016/j.fm.2016.10.021.
 
Kubo, M. T., Siguemoto, É. S., Funcia, E. S., Augusto, P. E., Curet, S., Boillereaux, L., Sastry, S. K., & Gut, J. A. (2020). Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. Current Opinion in Food Science, 35, 36-48. Doi:10.1016/j.cofs.2020.01.004.
 
Li, F. D., Li, L. T., Li, Z., & Tatsumi, E. (2004). Determination of starch gelatinization temperature by ohmic heating. Journal of Food Engineering, 62(2), 113-120. Doi:10.1016/S0260-8774(03)00199-7.
 
Nelson, S. O., & Bartley, P. Jr. (2000). Measuring frequency-and temperature-dependent dielectric properties of food materials. Transactions of the ASAE, 43, 1733-1736. Doi: 10.13031/2013.3075.
 
Palaniappan, S., & Sastry, S. K. (1991). Electrical conductivity of selected juices: influences of temperature, solids content, applied voltage, and particle size. Journal of Food Process Engineering, 14(4), 247-260. Doi:10.1111/j.1745-4530.1991.tb00135.x.
 
Saberian, H., Hamidi-Esfahani, Z., Ahmadi Gavlighi, H., & Barzegar, M. (2017). Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification, 117, 154-161. Doi:10.1016/j.cep.2017.03.025
 
Samprovalaki, K., Bakalis, S., & Fryer, P. J. (2007). Ohmic heating: models and measurements. In: Yanniotis, S. and B, Sunden (Eds) Heat transfer in food processing. WIT Press. Southampton, 159-186.
 
Sarang, S., Sastry, S. K., & Knipe, L. (2008). Electrical conductivity of fruits and meats during ohmic heating. Journal of Food Engineering, 87, 351-356. Doi:10.1016/j.jfoodeng.2007.12.012.
 
Shynkaryk, M. V., Ji, T., Alvarez, V. B., & Sastry, S. K. (2010). Ohmic heating of peaches in the wide range of frequencies (50 Hz to 1 MHz). Journal of Food Science, 75(7), E493-E500. Doi: 10.1111/j.1750-3841.2010.01778.x.
 
Srivastava, G., Das, C. K., Das, A., Singh, S. K., Roy, M., Kim, H., Sethy, N., Kumar, A., Sharma, R. K., Singh, S. K., Philip, D., & Das, M. (2014). Seed treatment with iron pyrite (FeS 2) nanoparticles increases the production of spinach. RSC Advances, 4(102), 58495-58504. Doi:10.1039/C4RA06861K.
 
Threlfall, R. T., Morris, J. R., Howard, L. R., Brownmiller, C. R., & Walker, T. L. (2005). Pressing effects on yield, quality, and nutraceutical content of juice, seeds, and skins from black beauty and sunbelt grapes. Journal of Food Science, 70, S167-S171. Doi:10.1111/j.1365-2621.2005.tb07152.x.
 
Torkian Boldaji, M. T., Borghaee, A. M., Beheshti, B., & Hosseini, S. E. (2017). Investigation of voltage gradient and electrode type effects on processing time, energy consumption and product quality in production of Tomato Paste by ohmic heating. Journal of Agricultural Machinery, 7, 152-164. Doi: 10.22067/Jam.V7i1.47150.
 
Vahedi Torshizi, M. V., Azadbakht, M., & Kashaninejad, M. (2021). Investigation of some energy and exergy
factors during ohmic heating processing of sour orange. Journal of Agricultural Machinery, 11(2), 435-445. Doi:10.22067/jam.v11i2.80760. (in Persian)
 
Weber, F., & Larsen, L. R. (2017). Influence of fruit juice processing on anthocyanin stability. Food Research International, 100, 354-365. Doi:10.1016/j.foodres.2017.06.033.
 
Zhu, S. M., Zareifard, M. R., Chen, C. R., Marcotte, M., & Grabowski, S. (2010). Electrical conductivity of particle–fluid mixtures in ohmic heating: Measurement and simulation. Food Research International, 43(6), 1666-1672. Doi:10.1016/j.foodres.2010.05.009.