نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشددانشکده فناوری کشاورزی ابوریحان، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران

2 دانشیار دانشکده فناوری کشاورزی ابوریحان، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران

3 دانشجوی کارشناسی ارشد دانشکده فناوری کشاورزی ابوریحان، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران

4 شرکت پاک رستن چشمه میهن، پارک علم و فناوری دانشگاه تهران

5 استادیار دانشکده فناوری کشاورزی ابوریحان، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران

6 استادیار پژوهشکده سبزی و صیفی‌، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

اخیرا توجه زیادی به تولید گیاهان در کشت­های عمودی سامانۀ کارخانۀ گیاهی معطوف شده است، زیرا امکان رشد گیاه را فارغ از شرایط آب‌ و ‌هوایی با مصرف بهینۀ منابع فراهم می‌کند. هدف تحقیق حاضر، بررسی رشد و عملکرد گیاه کاهو (Lactuca sativa L.) در سامانۀ طبقاتی کارخانۀ گیاهی تحت اثر طیف­های مختلف نور مصنوعی است. در این آزمایش گیاهان در بستر کشت هیدروپونیک با سامانۀ بازچرخ تکنیک جریان مواد غذایی پرورش یافتند. به منظور اجرای آزمایش، از طرح کاملا تصادفی استفاده شد. برای تأمین نیاز نوری گیاه از دیودهای ساطع‌کنندة نور (LED) شامل طیف‌های قرمز و آبی (RB) با نسبت‌‌های (RB,90:10-RB,80:20-RB,70:30)، قرمز و آبی و قرمزدور (RBFR) با نسبت (RBFR,3:1:1) و قرمز و سفید (RW) با نسبت (RW,1:1) و با طول مدت نوردهی 18 ساعت و شدت نور 20±250 میکرومول بر مترمربع در ثانیه استفاده شد. بیشترین سطح برگ و وزن بوته، بر اثر نور RB,80:20 مشاهده شد و گیاهان رشدیافته بر اثر نور RBFR واکنش اجتناب از سایه شامل افزایش ارتفاع گیاه همراه با کمترین سطح برگ را نسبت به سایر تیمار­های نوری نشان دادند. بنابراین، طیف RB,80:20 به دلیل داشتن بالاترین ویژگی­های رشدی و عملکردی به عنوان بهترین طیف برای تولید محصول کاهو در سامانۀ کارخانۀ گیاهی معرفی می­شود.

کلیدواژه‌ها

Aalifar, M., Aliniaeifard, S., Arab, M., Zare Mehrjerdi, M., Dianati Daylami, S., Serek, M., Woltering, E., & Li, T. (2020). Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system. Frontiers in Plant Science, 11, 511. doi: 10.3389/fpls.2020.00511.
 
Aliniaeifard, S., Seif, M., Arab, M., Zare Mehrjerdi, M., Li, T., & Lastochkina, O. (2018). Growth and photosynthetic performance of Calendula officinalis under monochromatic red light. International
Journal of Horticultural Science and Technology,
5(1), 123-132. doi: 10.22059/ijhst.2018.261042.248.
 
Anon. (2020). FAOSTAT. Food and Agriculture Organization of the United Nations.
 
Bantis, F., Koukounaras, A., Siomos, A. S., Fotelli, M. N., & Kintzonidis, D. (2020). Bichromatic red and blue LEDs during healing enhance the vegetative growth and quality of grafted watermelon seedlings. Scientia Horticulturae, 261, 109000. doi: 10.1016/j.scienta.2019.109000.
 
Benke, K., & Tomkins, B. (2017). Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy, 13(1), 13-26. doi.: 10.1080/ 15487733.2017.1394054.
 
Bian, Z., Wang, Y., Zhang, X., Li, T., Grundy, S., Yang, Q., & Cheng, R. (2020). A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods, 9, 732. doi: 10.3390/foods9060732.
 
Clavijo-Herrera, J., Van Santen E., & Gómez, C. (2018). Growth, water-use efficiency, stomatal conductance, and nitrogen uptake of two lettuce cultivars grown under different percentages of blue and red light. Horticulturae, 4(3), 16. doi: 10.3390/horticulturae4030016.
 
Dănilă, E., & Lucache, D. D. (2016). Efficient lighting system for greenhouses. Proceedings of the 2016 International Conference and Exposition on Electrical and Power Engineering EPE. Oct. 20-22. Iasi, Romania. doi: 10.1109/ICEPE.2016.7781379.
 
Esmaili, M., Aliniaeifard S., Mashal M., Vakilian K.A., Ghorbanzadeh P., Azadegan, B., Seif, M., & Didaran, F. (2021). Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations. Agricultural Water Management, 258, 107201. doi: 10.1016/j.agwat.2021.107201.
 
Ghorbanzadeh, P., Aliniaeifard, S., Esmaeili, M., Mashal, M., Azadegan, B., & Seif, M. (2021). Dependency of growth, water use efficiency, chlorophyll fluorescence, and stomatal characteristics of lettuce plants to light intensity. Journal of Plant Growth Regulation, 40(5), 2191-2207. doi: 10.1007/s00344-020-10269-z.
 
Graamans, L., van den Dobbelsteen, A., Meinen, E., & Stanghellini, C. (2017). Plant factories; crop transpiration and energy balance. Agricultural Systems, 153, 138-147. 10.1016/j.agsy.2017.01.003.
 
Hiyama, A., Takemiya, A., Munemasa, S., Okuma, E., Sugiyama, N., Tada, Y., Murata, Y., & Shimazaki, K. I. (2017). Blue light and CO2 signals converge to regulate light-induced stomatal opening. Nature Communications, 8, 1-13. doi: 10.1038/s41467-017-01237-5.
 
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Vol. 347. 2nd Ed. University of California Pub.
 
Hojjati, M., & Noshad, M. (2019). Challenges in health, quality and food security in Iran. Strategic Research Journal of Agricultural Sciences and Natural Resources, 4, 81-94. (in Persian)
 
Kaiser, E., Ouzounis, T., Giday, H., Schipper, R., Heuvelink, E., & Marcelis, L.F . (2019). Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimum. Frontiers in Plant Science, 9, 2002. doi: 10.3389/fpls.2018.02002.
Khan, F. A. (2018). A review on hydroponic greenhouse cultivation for sustainable agriculture. International Journal of Agriculture Environment and Food Sciences, 2, 59-66. doi: 10.31015/jaefs.18010.
 
Kim, H. H., Goins, G. D., Wheeler, R. M., & Sager, J. C. (2004). Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. Hortscience, 39, 1617-1622.
 
Kong, Y., & Nemali, K. (2021). Blue and far-red light affect area and number of individual leaves to influence vegetative growth and pigment synthesis in lettuce. Frontiers in Plant Science, 12, 667407. doi: 10.3389/fpls.2021.667407.
 
Kong, Y., Stasiak, M., Dixon, M. A., & Zheng, Y. (2018). Blue light associated with low phytochrome activity can promote elongation growth as shade-avoidance response: A comparison with red light in four bedding plant species. Environmental and Experimental Botany, 155, 345-359. doi: 10.1016/j.envexpbot.2018.07.021.
 
Kuno, Y., Shimizu, H., Nakashima, H., Miyasaka, J., & Ohdoi, K. (2017). Effects of irradiation patterns and light quality of red and blue light-emitting diodes on growth of leaf lettuce (Lactuca sativa L.“Greenwave”). Environmental Control in Biology, 55, 129-135.  doi: 10.2525/ecb.55.129.
 
Li, J., Wu, T., Huang, K., Liu, Y., Liu, M., & Wang, J. (2021). Effect of LED spectrum on the quality and nitrogen metabolism of lettuce under recycled hydroponics. Frontiers in Plant Science, 12, 1159. doi: 10.3389/fpls.2021.678197.
 
Lu, N., & Shimamura, S. (2018). Protocols, issues and potential improvements of current cultivation systems. In: Kozai, T. (Ed) Smart Plant Factory. Springer, Singapore. doi: 10.1007/978-981-13-1065-2_3.
 
Meng, Q., Kelly, N., & Runkle, E. S. (2019). Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale. Environmental and Experimental Botany, 162, 383-391. doi: 10.1016/j.envexpbot.2019.03.016.
 
Moosavi-Nezhad, M., Salehi, R., Aliniaeifard, S., Tsaniklidis, G., Woltering, E. J., Fanourakis, D., Żuk-Gołaszewska, K., & Kalaji, H. M. (2021). Blue light improves photosynthetic performance during healing and acclimatization of grafted watermelon seedlings. International Journal of Molecular Sciences, 22(15), 8043. doi: 10.3390/ijms22158043.
 
Moradi, S., Kafi, M., Aliniaeifard, S., Salami, S. A., Shokrpour, M., Pedersen, C., Moosavi-Nezhad, M., Wróbel, J., & Kalaji, H. M. (2021). Blue Light Improves Photosynthetic Performance and Biomass Partitioning toward Harvestable Organs in Saffron (Crocus sativus L.). Cells, 10, 1994. doi: 10.3390/cells10081994.
 
Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64, 3983-3998.
 
Nicole, C., Charalambous, F., Martinakos, S., Van De Voort, S., Li, Z., Verhoog, M., &, Krijn M. (2016). Lettuce growth and quality optimization in a plant factory. VIII International Symposium on Light in Horticulture. May 22-26. East Lansing, MI (United States of America). doi: 10.17660/ActaHortic.2016.1134.31.
 
Paradiso, R., & Proietti, S. (2021). Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. Journal of Plant Growth Regulation,  41, 742–780.
 
Park, Y., & Runkle, E. (2016). Investigating the merit of including far-red radiation in the production of ornamental seedlings grown under sole-source lighting. VIII International Symposium on Light in Horticulture, May 22-26. East Lansing, MI (United States of America).
 
Pennisi, G., Orsini, F., Blasioli, S., Cellini, A., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J.A., & Stanghellini, C. (2019). Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red: blue ratio provided by LED lighting. Scientific Reports, 9, 1-11. doi: 10.1038/s41598-019-50783-z.
 
Sago, Y. (2016). Effects of light intensity and growth rate on tipburn development and leaf calcium concentration in butterhead lettuce. HortScience. 51, 1087-1091. doi: 10.21273/HORTSCI10668-16.
 
Seif, M., Aliniaeifard, S., Arab, M., Mehrjerdi, M. Z., Shomali, A., Fanourakis, D., Li, T., & Woltering, E. (2021). Monochromatic red light during plant growth decreases the size and improves the functionality of stomata in chrysanthemum. Functional Plant Biology,  48, 515-528. doi: 10.1071/FP20280.
 
Sheng, L., Shen, D., Luo, Y., Sun, X., Wang, J., Luo, T., Zeng, Y., Xu, J., Deng, X., & Cheng, Y. (2017). Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chemistry, 216, 138-145. doi: 10.1016/j.foodchem.2016.08.024.
 
Tsirogiannis, I., Karras, G., Lambraki, E., Varras, G., Savvas, D., & Castellano, S. (2014). Evaluation of a plastic tube based hydroponic system for horizontal and vertical green surfaces on buildings. XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): V International Conference on Landscape and Urban Horticulture and International Symposium on Sustainable Management in the Urban Forest, Aug. 17-22. Brisbane, Australia.
 
Viczián, A., Klose, C., Ádám, É., & Nagy, F. (2017). New insights of red light‐induced development. Plant, Cell & Environment, 40, 2457-2468. doi: 10.1111/pce.12880.
 
Whippo, C., & Hangarter, R. (2004). Phytochrome modulation of blue‐light‐induced phototropism. Plant, Cell & Environment, 27, 1223-1228. doi: 10.1111/j.1365-3040.2004.01227.x.
 
Xie, D., Tarin, M. W. K., Chen, L., Ren, K., Yang, D., Zhou, C., Wan, J., He, T., Rong, J., & Zheng, Y. (2021). Consequences of LED lights on root morphological traits and compounds accumulation in Sarcandra glabra seedlings. International Journal of Molecular Sciences, 22, 7179. doi: 10.3390/ijms22137179.
 
Yabuki, K. (2004). Photosynthetic rate and dynamic environment. Springer Science & Business Media.