Aalifar, M., Aliniaeifard, S., Arab, M., Zare Mehrjerdi, M., Dianati Daylami, S., Serek, M., Woltering, E., & Li, T. (2020). Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system.
Frontiers in Plant Science, 11, 511. doi:
10.3389/fpls.2020.00511.
Aliniaeifard, S., Seif, M., Arab, M., Zare Mehrjerdi, M., Li, T., & Lastochkina, O. (2018). Growth and photosynthetic performance of
Calendula officinalis under monochromatic red light.
International
Journal of Horticultural Science and Technology, 5(1), 123-132.
doi: 10.22059/ijhst.2018.261042.248.
Anon. (2020). FAOSTAT. Food and Agriculture Organization of the United Nations.
Bantis, F., Koukounaras, A., Siomos, A. S., Fotelli, M. N., & Kintzonidis, D. (2020). Bichromatic red and blue LEDs during healing enhance the vegetative growth and quality of grafted watermelon seedlings.
Scientia Horticulturae, 261, 109000.
doi: 10.1016/j.scienta.2019.109000.
Benke, K., & Tomkins, B. (2017). Future food-production systems: vertical farming and controlled-environment agriculture.
Sustainability: Science, Practice and Policy, 13(1), 13-26.
doi.: 10.1080/ 15487733.2017.1394054.
Bian, Z., Wang, Y., Zhang, X., Li, T., Grundy, S., Yang, Q., & Cheng, R. (2020). A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments.
Foods, 9, 732. doi:
10.3390/foods9060732.
Clavijo-Herrera, J., Van Santen E., & Gómez, C. (2018). Growth, water-use efficiency, stomatal conductance, and nitrogen uptake of two lettuce cultivars grown under different percentages of blue and red light.
Horticulturae, 4(3), 16.
doi: 10.3390/horticulturae4030016.
Dănilă, E., & Lucache, D. D. (2016).
Efficient lighting system for greenhouses. Proceedings of the 2016 International Conference and Exposition on Electrical and Power Engineering EPE. Oct. 20-22. Iasi, Romania.
doi: 10.1109/ICEPE.2016.7781379.
Esmaili, M., Aliniaeifard S., Mashal M., Vakilian K.A., Ghorbanzadeh P., Azadegan, B., Seif, M., & Didaran, F. (2021). Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations.
Agricultural Water Management, 258, 107201.
doi: 10.1016/j.agwat.2021.107201.
Ghorbanzadeh, P., Aliniaeifard, S., Esmaeili, M., Mashal, M., Azadegan, B., & Seif, M. (2021). Dependency of growth, water use efficiency, chlorophyll fluorescence, and stomatal characteristics of lettuce plants to light intensity.
Journal of Plant Growth Regulation, 40(5), 2191-2207. doi:
10.1007/s00344-020-10269-z.
Graamans, L., van den Dobbelsteen, A., Meinen, E., & Stanghellini, C. (2017). Plant factories; crop transpiration and energy balance.
Agricultural Systems, 153, 138-147.
10.1016/j.agsy.2017.01.003.
Hiyama, A., Takemiya, A., Munemasa, S., Okuma, E., Sugiyama, N., Tada, Y., Murata, Y., & Shimazaki, K. I. (2017). Blue light and CO2 signals converge to regulate light-induced stomatal opening. Nature Communications, 8, 1-13. doi: 10.1038/s41467-017-01237-5.
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Vol. 347. 2nd Ed. University of California Pub.
Hojjati, M., & Noshad, M. (2019). Challenges in health, quality and food security in Iran. Strategic Research Journal of Agricultural Sciences and Natural Resources, 4, 81-94. (in Persian)
Kaiser, E., Ouzounis, T., Giday, H., Schipper, R., Heuvelink, E., & Marcelis, L.F . (2019). Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimum. Frontiers in Plant Science, 9, 2002. doi: 10.3389/fpls.2018.02002.
Khan, F. A. (2018). A review on hydroponic greenhouse cultivation for sustainable agriculture.
International Journal of Agriculture Environment and Food Sciences, 2, 59-66. doi:
10.31015/jaefs.18010.
Kim, H. H., Goins, G. D., Wheeler, R. M., & Sager, J. C. (2004). Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. Hortscience, 39, 1617-1622.
Kong, Y., & Nemali, K. (2021). Blue and far-red light affect area and number of individual leaves to influence vegetative growth and pigment synthesis in lettuce.
Frontiers in Plant Science, 12, 667407. doi:
10.3389/fpls.2021.667407.
Kong, Y., Stasiak, M., Dixon, M. A., & Zheng, Y. (2018). Blue light associated with low phytochrome activity can promote elongation growth as shade-avoidance response: A comparison with red light in four bedding plant species.
Environmental and Experimental Botany, 155, 345-359.
doi: 10.1016/j.envexpbot.2018.07.021.
Kuno, Y., Shimizu, H., Nakashima, H., Miyasaka, J., & Ohdoi, K. (2017). Effects of irradiation patterns and light quality of red and blue light-emitting diodes on growth of leaf lettuce (
Lactuca sativa L.“Greenwave”).
Environmental Control in Biology, 55, 129-135.
doi: 10.2525/ecb.55.129.
Li, J., Wu, T., Huang, K., Liu, Y., Liu, M., & Wang, J. (2021). Effect of LED spectrum on the quality and nitrogen metabolism of lettuce under recycled hydroponics.
Frontiers in Plant Science, 12, 1159. doi:
10.3389/fpls.2021.678197.
Lu, N., & Shimamura, S. (2018).
Protocols, issues and potential improvements of current cultivation systems. In: Kozai, T. (Ed) Smart Plant Factory. Springer, Singapore.
doi: 10.1007/978-981-13-1065-2_3.
Meng, Q., Kelly, N., & Runkle, E. S. (2019). Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale.
Environmental and Experimental Botany, 162, 383-391.
doi: 10.1016/j.envexpbot.2019.03.016.
Moosavi-Nezhad, M., Salehi, R., Aliniaeifard, S., Tsaniklidis, G., Woltering, E. J., Fanourakis, D., Żuk-Gołaszewska, K., & Kalaji, H. M. (2021). Blue light improves photosynthetic performance during healing and acclimatization of grafted watermelon seedlings.
International Journal of Molecular Sciences, 22(15), 8043.
doi: 10.3390/ijms22158043.
Moradi, S., Kafi, M., Aliniaeifard, S., Salami, S. A., Shokrpour, M., Pedersen, C., Moosavi-Nezhad, M., Wróbel, J., & Kalaji, H. M. (2021). Blue Light Improves Photosynthetic Performance and Biomass Partitioning toward Harvestable Organs in Saffron (
Crocus sativus L.).
Cells, 10, 1994.
doi: 10.3390/cells10081994.
Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64, 3983-3998.
Nicole, C., Charalambous, F., Martinakos, S., Van De Voort, S., Li, Z., Verhoog, M., &, Krijn M. (2016). Lettuce growth and quality optimization in a plant factory. VIII International Symposium on Light in Horticulture. May 22-26. East Lansing, MI (United States of America). doi: 10.17660/ActaHortic.2016.1134.31.
Paradiso, R., & Proietti, S. (2021). Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. Journal of Plant Growth Regulation, 41, 742–780.
Park, Y., & Runkle, E. (2016). Investigating the merit of including far-red radiation in the production of ornamental seedlings grown under sole-source lighting. VIII International Symposium on Light in Horticulture, May 22-26. East Lansing, MI (United States of America).
Pennisi, G., Orsini, F., Blasioli, S., Cellini, A., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J.A., & Stanghellini, C. (2019). Resource use efficiency of indoor lettuce (
Lactuca sativa L.) cultivation as affected by red: blue ratio provided by LED lighting.
Scientific Reports, 9, 1-11. doi:
10.1038/s41598-019-50783-z.
Sago, Y. (2016). Effects of light intensity and growth rate on tipburn development and leaf calcium concentration in butterhead lettuce.
HortScience. 51, 1087-1091. doi:
10.21273/HORTSCI10668-16.
Seif, M., Aliniaeifard, S., Arab, M., Mehrjerdi, M. Z., Shomali, A., Fanourakis, D., Li, T., & Woltering, E. (2021). Monochromatic red light during plant growth decreases the size and improves the functionality of stomata in chrysanthemum.
Functional Plant Biology, 48, 515-528. doi:
10.1071/FP20280.
Sheng, L., Shen, D., Luo, Y., Sun, X., Wang, J., Luo, T., Zeng, Y., Xu, J., Deng, X., & Cheng, Y. (2017). Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit.
Food Chemistry, 216, 138-145.
doi: 10.1016/j.foodchem.2016.08.024.
Tsirogiannis, I., Karras, G., Lambraki, E., Varras, G., Savvas, D., & Castellano, S. (2014).
Evaluation of a plastic tube based hydroponic system for horizontal and vertical green surfaces on buildings. XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): V International Conference on Landscape and Urban Horticulture and International Symposium on Sustainable Management in the Urban Forest, Aug. 17-22. Brisbane, Australia.
Viczián, A., Klose, C., Ádám, É., & Nagy, F. (2017). New insights of red light‐induced development.
Plant, Cell & Environment, 40, 2457-2468.
doi: 10.1111/pce.12880.
Xie, D., Tarin, M. W. K., Chen, L., Ren, K., Yang, D., Zhou, C., Wan, J., He, T., Rong, J., & Zheng, Y. (2021). Consequences of LED lights on root morphological traits and compounds accumulation in Sarcandra glabra seedlings.
International Journal of Molecular Sciences, 22, 7179.
doi: 10.3390/ijms22137179.
Yabuki, K. (2004). Photosynthetic rate and dynamic environment. Springer Science & Business Media.