Anon, 2008. Image processing toolbox 6. User’s Guide. The MathWorks, Inc.
Blasco, J., Aleixos, N., Roger, J. M., Rabatel, G. and Moltó, E. 2002. Automation and emerging technologies: robotic weed control using machine vision. Biosys. Eng. 83, 149-157.
Bosch, A., Munoz, X. and Freixenet, J. 2007. Segmentation and description of natural outdoor scenes. Image Vision Comput. 25, 727-740.
Burgos-Artizzu, X. P., Ribeiro, A., Guijarro, M. and Pajares, G. 2011. Real-time image processing for crop/weed discrimination in maze fields. Comput. Electron. Agr. 75, 337-346.
Chen, Y. R., Chao, K. and Kim, M. S. 2002. Machine vision technology for agricultural applications. Comput. Electron. Agr. 36, 173-191.
Gerhard, R. and Christensen, S. 2003. Real-time weed detection, decision making and patch spraying in maize, sugar beet, winter wheat and winter barley. Weed Res. 43, 385-392.
Gonzales, R. C. and Woods, R. E. 1992. Digital Image Processing. Reading, Mass. Addison-Wesley Publishing Co. New York, NY.
Hemming, J. and Rath, T. 2001. Precision agriculture: computer-vision-based weed identification under field conditions using controlled lighting, J. Agric. Eng. Res. 78(3): 233-243.
Jafari, A., Eghbali-Jahromi, H., Mohtasebi, S. S. and Omid, M. 2006. Color segmentation for classifying weeds from sugar beet using machine vision. Iranian J. Infor. Sci. Manage. 4(1): 1-12.
Lee, W., Slaughter, D. and Giles, D. 1999. Robotic weed control system for tomatoes using machine vision and precision chemical application. Precis. Agric. 1, 95-113.
Pérez, A. J., López, F., Benlloch, J. V. and Christensen, S. 2000. Color and shape analysis techniques for weed detection in cereal fields. Comput. Electron. Agr. 25(3): 197-212.
Slaughter, D. C., Giles, D. K. and Downey, D. 2008. Autonomous robotic weed control systems: a review. Comput. Electron. Agr. 61(1): 63-78.
Storkey, J., Cussans, J. W. and Lutman, P. J. W. 2000. Visual assessment of weed ground cover to predict yield loss. Is this a practical alternative to the me asurement of leaf area? 11th International Conference on Weed Biology. Dijon, France.
Tellaeche, A., BurgosArtizzu, X. P., Pajares, G., Ribeiro, A. and Fernández-Quintanilla, C. 2008. A new vision-based approach to differential spraying in precision agriculture. Comput. Electron. Agr. 60(2): 144-155.
Thorp, K. and Tian, L. 2004. A review on remote sensing of weeds in agriculture. Precis. Agric.
5, 477-508.
Vesali, S. and Komarizadeh, M. H. 2010. Designing a vision algorithm for weeds sprayer robot in potato’s fields. Proceedings of the 6th International Congress of Agricultural Machinery Engineering and Mechanization. Tehran University. Karaj, Iran. (in Persian)
Woebbecke, D. M., Meyer, G. M., Von Bargen, K. and Mortensen, A. 1995. Color indices for weed identification under various soil, residue and lighting conditions. T-ASAE. 389(1): 259-269.
Zayas, I., Pomeranz, Y. and Lai, F. S. 1989. Discrimination of wheat and non-wheat components in grain samples by image analysis. Cereal Chem. 66(3): 233-237.