نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد

2 استادگروه علوم و مهندسی صنایع غذایی پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده

فیلم­های جدید خوراکی بر پایه ثعلب(که از گیاه ثعلب،  Orchis mascula به­دست می­آید) و اسید اولئیک با نسبت­های 10، 20 و 30 (درصد وزنی/ وزنی) با استفاده از روش تشکیل امولسیون با هدف بهبود سدکنندگی نسبت به بخار آب و خواص مکانیکی آنها تهیه شدند.  با افزایش غلظت اسید اولئیک تا 30 درصد وزنی درصد فیلم­های تهیه شده از ثعلب، نفوذپذیری به اکسیژن (27درصد)، ازدیاد طول (86 درصد) و ضخامت (2درصد) به طرز معنی­داری (05/0>P) افزایش یافت، درحالی­که استحکام کششی (37 درصد)، انحلال­پذیری (39درصد)، شفافیت (13درصد) و نفوذپذیری به بخار آب (54 درصد) کاهش پیدا کرد.  با افزایش غلظت اسید اولئیک، رنگ فیلم ثعلب کمی به زرد متمایل شد، اگرچه هنوز هم در ظاهر شفاف به­ نظر می­رسید.  با توجه به خواص مطلوب سدکنندگی و ضد رطوبتی فیلم ثعلب، می­توان از آن برای بسته­بندی آن دسته از مواد غذایی که رطوبت کمی دارند و یا میل ترکیبی چندانی به آب ندارند، استفاده کرد.

کلیدواژه‌ها

Anon. 1995. Standard Test Methods for Water Vapor Transmission of Materials American Society for Testing and Materials. E96 M. Annual Book of Standards. American Society for Testing and Materials (ASTM).
Anon. 1997. Standard Test Method for Transparency of Plastic Sheeting. D1746-09. Annual Book of Standards. American Society for Testing and Materials (ASTM).
Anon. 2001. Standard Test Method for Tensile Properties of Thin Plastic Sheeting. D882-12. Annual Book of Standards. American Society for Testing and Materials (ASTM).
Anon. 2010. Standard Test Method for Oxygen Gas Transmission Rate through Plastic Film and Sheeting Using a Coulometric Sensor.  D3985. Annual Book of Standards. American Society for Testing and Materials (ASTM).
Bertan, L., Tanada-Palmu, P., Siani, A. and Grosso, C. 2005. Effect of fatty acids and ‘Brazilian elemi’on composite films based on gelatin.  Food Hydrocolloids. 19(1): 73-82.
Bourtoom, T. 2008. Edible films and coatings: characteristics and properties.  Int. Food Res. J. 15(3): 237-248.
Callegarin, F., Gallo, J-AQ., Debeaufort, F. and Voilley, A. 1997. Lipids and biopackaging.  J. Amer. Oil Chemists' Soc. 74(10): 1183-1192.
Cha, D. S. and Chinnon, M. S. 2004. Biopolymer-based antimicrobial packaging: A Review. Crit. Rev. Food Sci. Nutr. 44, 223­237.
Chiumarelli, M. and Hubinger, M. D. 2012. Stability, solubility, mechanical and barrier properties of cassava starch–Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids. 28(1): 59-67.
Cuq, B., Gontard, N., Cuq, J. L. and Guilbert, S. 1996.  Functional properties of myofibrillar protein-based biopackaging as affected by film thickness. J. Food. Sci. 61(3): 580-584.
Debeaufort, F., Quezada-Gallo, J-A. and Voilley, A. 1998. Edible films and coatings: tomorrow's packagings: A Review. Food Sci. 38(4): 299-313.
Dickinson, E. 2009. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids. 23(6): 1473-1482.
Donhowe, G. and Fennema, O. 1993. Water vapor and oxygen permeability of wax films. J. Amer. Oil Chemists’ Soc. 70(9): 867-873.
Ekrami, M. and Emam-Djomeh, Z. 2013. Water vapor permeability, optical and mechanical properties of Salep-based edible film. J. Food Process. Pres. 38(4): 1812-1820.
Farhoosh, R. and Riazi, A. 2007. A compositional study on two current types of salep in Iran and their rheological properties as a function of concentration and temperature.  Food Hydrocolloids. 21(4): 660-666.
Fernandez, L., de Apodaca, E.D., Cebrián, M., Villarán, M. C. and Maté, J. I. 2007. Effect of the unsaturation degree and concentration of fatty acids on the properties of WPI-based edible films.  Eur. Food Res. Technol. 224(4): 415-420.
Gennadios, A., Rhim, J., Handa, A., Weller, C. and Hanna, M. 1998. Ultraviolet radiation affects physical and molecular properties of soy protein films. J. Food Sci. 63(2): 225-228.
Gerard, J. 1975. The Herbal or General History of Plants. New York: Dover Publications Inc.  VII. 1633, 493-522. 
Ghasemlou, M., Khodaiyan, F., Oromiehie, A. and Yarmand, M. S. 2011. Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid.  Int. J. Biol. Macromol. 49(3): 378-384.
Gontard, N., Duchez, C., Cuq, J. L. and Guilbert, S. 1994. Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. Int. J. Food Sci. Technol. 29(1): 39-50.
Guilbert, S., Cuq, B. and Gontard, N. 1997. Recent innovations in edible and/or biodegradable packaging materials. Food Add. Contam. 14(6-7): 741-751.
Hosseini, M., Razavi, S. and Mousavi, M. A. 2009. Antimicrobial, physical and mechanical properties of chitosan‐based films incorporated with thyme, clove and cinnamon essential oils. J. Food Process Preserv. 33(6): 727-743.
Karel, M., Proctor, B. and Wiseman, G. 1959. Factors affecting water vapor transfer through food packaging films. Food Technol. 13(1): 69-74.
Kaya, S. and Tekin, A. R. 2001. The effect of< i> salep</i> content on the rheological characteristics of a typical ice-cream mix. J. Food Eng. 47(1): 59-62.
Kayacier, A. and Dogan, M. 2006. Rheological properties of some gums-salep mixed solutions. J. Food Eng. 72(3): 261-265.
Khwaldia, K., Banon, S., Desobry, S. and Hardy, J. 2004. Mechanical and barrier properties of sodium caseinate–anhydrous milk fat edible films.  Int. J. Food Sci. Technol. 39(4): 403-411.
Lee, K.Y., Shim, J. and Lee, H. G. 2003. Mechanical properties of gellan and gelatin composite films.  Carbohydrate Polymers. 56(2): 251-254.
Mikkonen, K. S., Rita, H., Helén, H., Talja, R. A., Hyvönen, L. and Tenkanen, M. 2007. Effect of polysaccharide structure on mechanical and thermal properties of galactomannan-based films. Biomacromolecules. 8(10): 3198-3205.
Morillon, V., Debeaufort, F., Blond, G., Capelle, M. and Voilley. A. 2002. Factors affecting the moisture permeability of lipid-based edible films: A Review.  Critical Reviews. Food Sci. Nut. 42(1): 67-89.
Nie, N. H., Bent, D. H. and Hull, C. H. 1975. SPSS: Statistical Package for the Social Sciences. Vol. 227.  McGraw-Hill New York. 260-344.
Nisperos-Carriedo, M. O. 1994. Edible coatings and films based on polysaccharides. In: Krochta, J. M., Baldwin, E. A. and Nisperos-Carriedo, M. O. (Eds.) Edible coatings and films to improve food quality. Lancaster, PA: Technomic Publishing Company. 305– 335.
Pérez-Mateos, M., Montero, P. and Gómez-Guillén, M. 2009. Formulation and stability of biodegradable films made from cod gelatin and sunflower oil blends. Food Hydrocolloids. 23(1): 53-61.
Rios, L. M., Moore, C. and Jones, P. R. 2007. Persistent organic pollutants carried by synthetic polymers in the ocean environment. Marine Pollution Bulletin. 54(8): 1230-1237.
Shaw, N. B., Monahan, F. J., O’Riordan, E. D. and O’sullivan, M. 2001. Effect of soy oil and glycerol on physical properties of composite WPI films. J. Food Eng. 51, 299-304.
Taqi, A., Askar, K. A., Nagy, K., Mutihac, L. and Stamatin, I. 2011. Effect of different concentrations of olive oil and oleic acid on the mechanical properties of albumen (egg white) edible films. African J. Biotechnol. 10(60): 12963-12972.
Tharanathan, R. N. 2003. Biodegradable films and composite coatings: past, present and future. Trends Food Sci. Technol. 14, 71–8.
Zahedi, Y., Ghanbarzadeh, B. and Sedaghat, N. 2010. Physical properties of edible emulsified films based on pistachio globulin protein and fatty acids. J. Food Eng. 100(1): 102-108.
Zargari, A. 1990. Medicinal Plants.  4th Ed. Tehran University Pub. (in Farsi)