نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد

2 دانشیار گروه علوم و مهندسی صنایع غذایی پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 استاد گروه علوم و مهندسی صنایع غذایی پردیس کشاورزی و منابع طبیعی دانشگاه تهران

4 استادیار پژوهشکده بیوتکنولوژی کشاورزی ایران

چکیده

در این پژوهش، فیلم‏های مرکب خوراکی کفیران- پروتئین‏های آب پنیر با نسبت­های مختلف (30:70، 50:50، 70:30، 90:10) به روش قالب‏ریزی ساخته شدند.  نتایج بررسی خواص فیزیکی شامل ضخامت، میزان رطوبت، انحلال­پذیری در آب و خواص مکانیکی شامل کرنش در نقطه پار‏گی و استحکام کششی، آهنگ عبور بخار آب و ریزساختار فیلم‏ها نشان می‏دهد که افزایش مقدار پروتئین‏های آب پنیر از صفر تا 50 درصد (حجمی/حجمی) باعث کاهش نفوذپذیری نسبت به بخار آب فیلم‏ها از 11-10×95/3به  میزان  11-10×39/3  گرم بر متر بر ثانیه بر پاسکال شده است و استحکام کششی و انعطاف‏پذیری فیلم‏ها افزایش و به­ترتیب از 30/5 و 39/60 به 54/6 مگاپاسکال و 79/83 درصد رسیده است، ولی با افزایش مقدار پروتئین‏های آب پنیر از 50 درصد، نفوذپذیری افزایش و استحکام کششی و انعطاف‏پذیری فیلم‏ها کاهش می‏یابد.  تصاویر میکروسکوپ الکترونی نشان دهنده ایجاد ساختار یکنواخت در فیلم­های مرکب است و جداسازی فاز مشاهده نمی‏شود، که به دلیل سازگاری این دو بیوپلیمر با هم است.

کلیدواژه‌ها

Anker, M., Berntsen, J., Hermansson, A.  M and Stading, M. 2001. Improved water vapor barrier of whey protein film by addition of an acetylated monoglyceride. Innov. Food Sci. Emer. Technol. 3, 81-92.
Anon. 1995. Standard Test Methods for Water Vapor Transmission of Materials American Society for Testing and Materials. E96 M. Annual Book of Standards. American Society for Testing and Materials (ASTM).
Brindle, L. P. and Krochta, J. M. 2008. Physical properties of whey protein–hydroxypropylmethylcellulose blend edible films. Food Eng. Physic. Properties. 73, 446-454.
Debeaufort, F., Quezada-Gallo, J. A. and Voilley, A. 1998. Edible films and coatings: tomorrow’s packagings: A Review .Critical Reviews in Food Science and Nutrition. 38, 299-313.
Ferreira, O. C., Nunes, A. C., Delgadillo, I. and Lopes-da-Silva, A.  J. 2009 .Characterization of chitosan–whey protein films at acid pH. Food Res. Int. 42, 807-813.
Ghanbarzadeh, B. and Oromiehi, R.  A. 2008.  Biodegradable biocomposite films based on whey protein and zein: Barrier, mechanical properties and AFM analysis. Int. J. Biol. Macromol. 43, 209-215.
Ghasemlou, M., Khodaiyan, F., Oromiehie, A. and Yarmand, M. S. 2011a .Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem. 27, 1496-1502.
Ghasemlou, M., Khodaiyan, F., Oromiehie, A. and Yarmand, M.  S., 2011b.  Characterization of edible emulsified films with low affinity to water based on kefiran and oleic asid.  Int. J. Biol. Macromol. 49, 378–384.
Gontard, N., Duchez, C., Cuq, B. and Guilbert, S. 1994. Edible composite films of wheat gluten and lipids: Water vapour permeability and other physical properties. Food Sci. Technol. 29, 39-50.
Gounga, M.  H., Xu, Sh.  Y. and Wang, Zh. 2007. Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. J. Food Eng. 83, 521–530.
Leuangsukrerk, M., Phupoksakul, T., Tananuwong, K., Borompichaichartkul, Ch. and Janjarasskul, T. 2014. Properties of konjac glucomannane whey protein isolate blendfilms. LWT - Food Sci. Technol. 59, 94-100. 
Longares, A., Monohan, F. J., O’Riordan, E. D. and O’Sullivan, M. 2005. Physical properties of edible films made from mixtures of sodium caseinate and WPI.  Int. Dairy J. 15, 1255-1260.
Motedayen, A. A., Khodaiyan, F. and Salehi, E.  A. 2013.  Development and characterisation of composite films made of kefiran and starch. Food Chem. 136, 1231–1238.
Ojagh, S.  M., Rezaei, M., Razavi, S. A. and Hosseini, S.  M. 2010. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem. 122, 161-166.
Oses, J., M, Fabregat-Vázquez., R, Pedroza-Islas., Tomás, A S. and Cruz-Orea,  A. 2009. Development and characterization of composite edible films based on whey protein isolate and mesquite gum. J. Food Eng. 92, 56-62.
Piermaria, J. M. 2008. Gelling properties of kefiran, a food-grade polysaccharide obtained from kefir grain.  Food Hydrocolloids. 22, 1520-1527.
Piermaria, J. A., Pinotti, A., Garcia, M. A. and Abraham, A. G. 2009. Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food Hydrocolloids. 23, 684-690.
Piermaria, J., Bosch, A., Pinotti, A., Yantorno, O., Alejandra Garcia, M. and Graciela Abraham, A. 2011. Kefiran films plasticized with sugars and polyols: water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy.  Food Hydrocolloids. 25, 1261-1269.
Sawyer, L., Kontopidis, G. and Wu, S. Y. 1999. Beta-lactoglobulin – a three-dimensional perspective. Int. J. Food Sci. Technol. 34, 409–418 .
Tharanathan, R.  N., 2003.  Biodegradable films and composite coatings: past, present and future.  Food Sci.  Technol,  14, 71-78.
Vilaseca, F., Mendez, J.  A., Pelach, A., Llop, M., Canigueral, N., Girones, J., Turon, X., and Mutje, P., 2007.  Composite materials derived from biodegradable starch polymer and jute strands.  Process Biochemistry, 42, 329-334.
Yoo, Z. and Krochta, J.  M. 2011. Whey protein–polysaccharide blended edible film formation and barrier, tensile, thermal and transparency properties. J. Sci. Food Agric. 91, 2628–2636.
Zhou, J. J., Wang, S. Y. and Gunasekaran, S. 2009. Preparation and characterization of whey protein film Incorporated with TiO2 nanoparticles. J. Food Sci. 74, 50-55.