Document Type : Original Article

Authors

1 1- Ms.c Student of Department of Bio-System Mechanical Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

2 Department of Biosystem Mechanical Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran.

3 Assistant Professor of Department of Horticulture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

4 Tarbiyat modares university

Abstract

Abstract
In this research, for cooking of mushrooms, an ohmic heating device was used to evaluate the performance of the ohmic system in three voltage gradients (7.5, 9.25 and 11.5 V/cm), three types of electrodes (steel, brass and aluminum) and three concentrations of the ohmic solution, 20 ml of water and three amounts of salt (1, 2 and 3g). Also, in this process, the input current, electrical conductivity coefficient and system performance coefficient during the mushroom cooking process were calculated and the obtained data were analyzed using statistical software. Results showed that all three factors of voltage gradient, electrode type and solution concentration had a significant effect on the investigated factors and the greatest effect was shown in voltage gradient and then the electrode type and ohmic solution concentration had a significant effect on the input current factors, electrical conductivity coefficient and system performance coefficient. Based on results, it can be stated that the best type of electrode used is aluminum electrode and the best concentration is 3 grams of salt and 20 milliliters of water. The highest values of input current, electrical conductivity coefficient and performance coefficient are obtained in this concentration with this electrode.

Keywords

Amiali, M., Ngadi, M. O., Raghavan, V. G., & Nguyen, D. H. (2006). Electrical conductivities of liquid egg products and fruit juices exposed to high pulsed electric fields. International Journal of Food Properties, 9(3), 533-540.‏ Doi:10.1080/10942910600596456.
 
Anwar, J., Shafique, U., Waheed-uz-Zaman, R., Salman, M., Dar, A., Anzano, J. M., Ashraf, U., & Ashraf, S. (2015). Microwave chemistry: Effect of ions on dielectric heating in microwave ovens. Arabian Journal of Chemistry, 8(1), 100-104. Doi:10.1016/j.arabjc.2011.01.014.
 
Azadbakht, M., Vahedi Torshizi, M. V., & Kashaninejad, M. (2020). Application of the response surface method in the analysis of ohmic heating process performance in sour orange juice processing. Agricultural Engineering International: CIGR Journal, 22(3), 250-261.
 
Cappato, L. P., Ferreira, M. V. S., Guimaraes, J. T., Portela, J. B., Costa, A. L. R., Freitas, M. Q., & Cruz, A. G. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science and Technology, 62, 104-112. Doi: 10.22067/Jam.V7i1.47150. (in Persian)
 
Castro, I., Teixeira, J. A., Salengke, S., Sastry, S. K., & Vicente, A. A. (2004). Ohmic heating of strawberry products: Electrical conductivity measurements and ascorbic acid degradation kinetics. Innovative Food Science and Emerging Technologies, 5(1), 27-36. Doi:10.1016/J.Ifset.2003.11.001.
 
Darvishi, H., (2012). Ohmic Heating Behaviour and Electrical Conductivity of Tomato Paste. Journal of Nutrition & Food Sciences, 2(9), 1000167. Doi: 10.4172/2155-9600.1000167.
 
Darvishi, H., Hosainpour, A., Nargesi, F., & Fadavi, A. (2015). Exergy and energy analyses of liquid food in an Ohmic heating process: A case study of tomato production. Innovative Food Science and Emerging Technologies, 31, 73-82. Doi:10.1016/j.ifset.2015.06.012.
 
Darvishi, H., Khostaghaza, M. H., & Najafi, G. (2013). Ohmic heating of pomegranate juice: Electrical conductivity and pH change. Journal of the Saudi Society of Agricultural Sciences, 12(2), 101–108. Doi:10.1016/j.jssas.2012.08.003.
 
Ghasemi, M., Khojastehpour, M., & Aghkhani, M. H. (2014). Evaluating the Mechanical Properties of Tomato Based on Electrical Conductivity. Journal of Agricultural Machinery, 4(2), 314-323.‏ Doi:10.22067/jam.v4i2.34825. (in Persian)
 
Icier, F., Ilicali, C. (2005). Temperature dependent electrical conductivities of fruit purees during ohmic heating. Food Research, 38, 135-1142. Doi:10.1016/j.foodres.2005.04.003.
 
Jaeger, H., Roth, A., Toepfl, S., Holzhauser, T., Engel, K. H., Knorr, D., Rudi F. Vogel, R. F., Bandick, N., Kulling, S., Heinz, Volker., & Steinberg, P. (2016). Opinion on the use of ohmic heating for the treatment
of foods. Trends in Food Science & Technology, 55, 84-97.‏  Doi:10.1016/j.tifs.2016.07.007.
 
Kanjanapongkul, K. (2017). Rice cooking using ohmic heating: Determination of electrical conductivity, water diffusion and cooking energy. Journal of Food Engineering, 192, 1-10. Doi:10.1016/j.jfoodeng.2016.07.014.
 
Kautkar, S., Pandey, R. K., Richa, R., & Kothakota, A. (2015). Temperature dependent electrical conductivities of ginger paste during ohmic heating. International Journal of Agriculture, Environment and Biotechnology, 8(1), 21-27. DOI:10.5958/2230-732X.2015.00003.0.
 
Kim, S. S., Choi, W., & Kang, D. H. (2017). Application of low frequency pulsed ohmic heating for inactivation of foodborne pathogens and MS-2 phage in buffered peptone water and tomato juice. Food Microbiology, 63, 22-27. Doi:10.1016/j.fm.2016.10.021.
 
Kubo, M. T., Siguemoto, É. S., Funcia, E. S., Augusto, P. E., Curet, S., Boillereaux, L., Sastry, S. K., & Gut, J. A. (2020). Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. Current Opinion in Food Science, 35, 36-48. Doi:10.1016/j.cofs.2020.01.004.
 
Li, F. D., Li, L. T., Li, Z., & Tatsumi, E. (2004). Determination of starch gelatinization temperature by ohmic heating. Journal of Food Engineering, 62(2), 113-120. Doi:10.1016/S0260-8774(03)00199-7.
 
Nelson, S. O., & Bartley, P. Jr. (2000). Measuring frequency-and temperature-dependent dielectric properties of food materials. Transactions of the ASAE, 43, 1733-1736. Doi: 10.13031/2013.3075.
 
Palaniappan, S., & Sastry, S. K. (1991). Electrical conductivity of selected juices: influences of temperature, solids content, applied voltage, and particle size. Journal of Food Process Engineering, 14(4), 247-260. Doi:10.1111/j.1745-4530.1991.tb00135.x.
 
Saberian, H., Hamidi-Esfahani, Z., Ahmadi Gavlighi, H., & Barzegar, M. (2017). Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification, 117, 154-161. Doi:10.1016/j.cep.2017.03.025
 
Samprovalaki, K., Bakalis, S., & Fryer, P. J. (2007). Ohmic heating: models and measurements. In: Yanniotis, S. and B, Sunden (Eds) Heat transfer in food processing. WIT Press. Southampton, 159-186.
 
Sarang, S., Sastry, S. K., & Knipe, L. (2008). Electrical conductivity of fruits and meats during ohmic heating. Journal of Food Engineering, 87, 351-356. Doi:10.1016/j.jfoodeng.2007.12.012.
 
Shynkaryk, M. V., Ji, T., Alvarez, V. B., & Sastry, S. K. (2010). Ohmic heating of peaches in the wide range of frequencies (50 Hz to 1 MHz). Journal of Food Science, 75(7), E493-E500. Doi: 10.1111/j.1750-3841.2010.01778.x.
 
Srivastava, G., Das, C. K., Das, A., Singh, S. K., Roy, M., Kim, H., Sethy, N., Kumar, A., Sharma, R. K., Singh, S. K., Philip, D., & Das, M. (2014). Seed treatment with iron pyrite (FeS 2) nanoparticles increases the production of spinach. RSC Advances, 4(102), 58495-58504. Doi:10.1039/C4RA06861K.
 
Threlfall, R. T., Morris, J. R., Howard, L. R., Brownmiller, C. R., & Walker, T. L. (2005). Pressing effects on yield, quality, and nutraceutical content of juice, seeds, and skins from black beauty and sunbelt grapes. Journal of Food Science, 70, S167-S171. Doi:10.1111/j.1365-2621.2005.tb07152.x.
 
Torkian Boldaji, M. T., Borghaee, A. M., Beheshti, B., & Hosseini, S. E. (2017). Investigation of voltage gradient and electrode type effects on processing time, energy consumption and product quality in production of Tomato Paste by ohmic heating. Journal of Agricultural Machinery, 7, 152-164. Doi: 10.22067/Jam.V7i1.47150.
 
Vahedi Torshizi, M. V., Azadbakht, M., & Kashaninejad, M. (2021). Investigation of some energy and exergy
factors during ohmic heating processing of sour orange. Journal of Agricultural Machinery, 11(2), 435-445. Doi:10.22067/jam.v11i2.80760. (in Persian)
 
Weber, F., & Larsen, L. R. (2017). Influence of fruit juice processing on anthocyanin stability. Food Research International, 100, 354-365. Doi:10.1016/j.foodres.2017.06.033.
 
Zhu, S. M., Zareifard, M. R., Chen, C. R., Marcotte, M., & Grabowski, S. (2010). Electrical conductivity of particle–fluid mixtures in ohmic heating: Measurement and simulation. Food Research International, 43(6), 1666-1672. Doi:10.1016/j.foodres.2010.05.009.