Document Type : Original Article

Author

Assistant Professor

Abstract

The purpose of this research was to introduce a new laboratory test procedure which could be used under field condition. In this context, the performance of a pneumatic planter was investigated under laboratory conditions for maize, castor, fababean, sorghum, sugarbeet, watermelon and cucumber seeds. The effect of operational speed and vacuum pressure were evaluated by examining the quality of feed index, precision in spacing (coefficient of variation), miss index and multiple indexes. The most  suitable operating parameter values for maize, castor, sorghum and  sugar beet seeds were obtained at the first level of operating speed and 4.0 kpa pressure; for watermelon seed: second level of speed and 4.5 kpa pressure; for cucumber seed: first level of speed and 4.5 kpa pressure. Furthermore, in order to determine the relationship between most important operating parameters affecting the performance of the Pneumatic metering device and seed physical properties, regression models were developed. According to the results, the vacuum pressure of Pneumatic planter could suitability and acceptably be described by two final models with values of root mean square error 6.7×10-2 and 5.7×10-2 and reduced chi-square 8.2×10-2 and 5.6×10-2 for the first and second model, respectively.

Keywords

Afify, M., El-Haddad, Z., Hassan, G. and Shaaban, Y. 2009. Mathematical model for predicting vacuum pressure of onion seeds precision seeder. J. Agric. Eng. 26(4):1776-1799.
 
Barut, Z. B. 1996. Farkli tohumlarin ekiminde kullanilan dusey plakali, hava emisli hassas ekici duzenin uygun calisma kosullarinin saptanmasi. [Determination of the optimum working parameters of a precision vacuum seeder]. Ph.D. Thesis. University of Cukurova. Adana, Turkey.
 
Bernacki, H., Haman, J. and Kanafojski, C. Z. 1972. Agricultural Machines, Theory and Construction.  Scientific Publication Foreign Cooperation Centre of the Central Institute for Scientific. Technical and Economic Information. Vol. 1. Warsaw, Poland.
 
Bozdogan, A. M. 2008. Seeding uniformity for vacuum precision seeders.Sci. Agr. (Piracicaba, Braz.). 65(3): 318-322.
 
Dursun, I. G. 2001. Determination of projected area of some grain products by using image processing. J. Agr. Sci. 7(3): 102-107.
 
Fornstrom, K. J. and Miller, S. D. 1989. Comparison of sugar beet planters and planting depth with two sugar beet varieties. J. Am. Soc. Sugar Beet Technol. 26(3&4): 10-16.
 
Guarella, P., Pellerano, A. and Pascuzzi, S. 1996. Experimental and theoretical performance of a vacuum seeder nozzle for vegetable seeds. Agric. Eng. Res. 46, 29-36.
 
Gupta, P., Ahmet, J., Shivhare, U. S. and Raghavon, G. S. V. 2002. Drying characteristics of red chilli. Dry. Technol. 20(10): 1975-1987.
 
Kabganian, R., Carrier, D. J. and Sokhansanj, S. 2002. Physical characteristics and drying rate of echinacea root. Dry. Technol. 20(3): 637-649.
 
Karayel, D., Barut, Z. and Ozmerzi, A. 2004. Mathematical modelling of vacuum pressure on a precision seeder. J. Biosystem. Eng. 87(4): 437-444.
 
Karayel, D., Wiesehoff, M., Ozmerzi, A. and Muller, J. 2006. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system. J. Comput. Electron. Agric. 50, 89-96.
 
Katchman, S. and Smith, J. 1995. Alternative measures of accuracy in plant spacing for planter using single seed metering. T- ASAE. 38, 379-387.
 
Krokida, M. K., Maroulis, Z. B. and Kremalis, C. 2002. Process design of rotary dryers for olive cake. Dry. Technol. 20(4,5): 771-788.
 
Midilli, A., Kucuk, H. and Yapar, Z. 2002. A new model for singlelayer drying. Dry. Technol. 20(7): 1503-1513.
 
Mohsenin, N. N. 1970. Physical Properties of Plant and Animal Materials. Gordon and Breach Science Pub. New York.
 
Muller, J., Rodriguez, G. and Koller, K. 1994. Optoelectronic measurement system for evaluation of seed spacing. Report No. 94-D-053. XII. CIGR Word Congress and AgEng’94 Conference on Agricultural Engineering. Milano.
 
Nielsen, R. L. 1995. Planting speed effects on stand establishment and grain yield of corn. J. Prod. Agric. 8(3): 391-393.
 
Ogot, H. 1998. Some physical properties of white lupin. J. Agri. Eng. Res. 56, 273-277.
 
Panning, J., Kocher, M., Smith, J. and Kachman, S. 2000. Laboratory and field testing of seed spacing uniformity for sugar beet planters. J. Biol. Syst. Eng. ASAE. 16(1): 7-13.
 
Raheman, H. and Singh, U. 2003. A sensor for flow seed metering mechanisms. J. Inst. Eng. Agric. Eng. 84, 6-8.
 
Sahoo, P. K. and Srivastava, A. P. 2002. Physical properties of okra seed. Biosystem. Eng. 83(4): 441-448.
 
Shaaban, U., Afify, M., Hassan, G. and El-Haddad, Z. 2009. Development of a vacuum precision seeder prototype for onion seeds. Misr J. Agric.Eng. 26(4): 1751-1775.
 
Shafii, S. and Holmes R. G. 1990. Air-jet seed metering, a theoretical and experimental study. T- ASAE.
33(5): 1432-1438.
 
Singh, R. C., Singh, G. and Saraswat, D. C. 2005. Optimization of design an operational parameters of a pneumatic seed metering device for planting cottonseeds. Biosystem. Eng. J.92(4): 429-438.
 
Togrul, I. T. and Pehlivan, D. 2002. Mathematical modelling of solar drying of apricots in thin layers. J. Food Eng. 55, 209-216.
 
Togrul, I. T. and Pehlivan, D. 2003. Modelling of drying kinetics of single apricot. J. Food Eng. 58, 23-32.
 
Xiaoyan, D., Xu, L., Caixia, Sh., Haidong, H. and Qingxi, L. 2010. Mathematical model and optimization of structure and operating parameters of pneumatic precision metering device for rapeseed. J. Food, Agric. Environ. 8(3,4): 318-322.
 
Yaldiz, O. and Ertekin, C. 2001. Thin layer solar drying of some vegetables. Dry. Technol. 19(3): 583-596.
 
Zulin, Z., Upadhyay, S. K., Safii, S. and Garret, R. E. 1991. A hydropneumatic seeder for primed seeds.
T-ASAE. 34(1): 21-26.